
Supporting Document: Evaluation
Activities for collaborative Protection

Profile for Dedicated Security
Component

Mandatory Technical Document

Version 1.0.1, December 13, 2022

Foreword
This is a Supporting Document (SD), intended to complement the Common Criteria Version 3.1
Release 5 and the associated Common Evaluation Methodology for Information Technology
Security Evaluation.

SDs may be "Guidance Documents," that highlight specific approaches and application of the
standard to areas where no mutual recognition of its application is required, and as such, are not of
normative nature. SDs may also be "Mandatory Technical Documents," that have a mandatory
application for evaluations where the scope is covered by that of the SD. The usage of SDs of the
latter class is not only mandatory, but certificates issued as a result of their application are
recognized under the CCRA.

This supporting document has been developed by the Dedicated Security Component iTC and is
designed to be used to support the evaluations of products against the cPPs identified in section 1.1.

Technical Editor:

DSC iTC

Document history:

v1.0, September 10, 2020 - initial draft

v1.0.1, December 13, 2022 - conversion to asciidoc

General Purpose:

The purpose of a DSC is to provide seven security services to devices that incorporate them: Parse,
Provision, Protect, Process, Prove, Purge, and Propagate. The DSC acts as a secure and separate
processing area that stores and manipulates SDOs and SDEs that are isolated from the remainder of
the device.

Field of special use:

Vendors and integrators of mobile devices and other hardware devices that use DSCs.

Acknowledgements:

This Supporting Document was developed by the DSC international Technical Community with
representatives from industry, government agencies, Common Criteria Test Laboratories, and
members of academia.

1

Table of Contents
Foreword . 1

1. Introduction. 5

1.1. Technology Area and Scope of Supporting Document. 5

1.2. Structure of the Document . 5

1.3. Terminology . 6

1.3.1. Glossary . 6

1.3.2. Acronyms . 9

1.4. Test Environment Note . 10

2. Evaluation Activities for SFRs . 12

2.1. Cryptographic Support (FCS) . 12

2.1.1. Cryptographic Key Management (FCS_CKM) . 12

2.1.2. Cryptographic Key Management (Extended - FCS_CKM_EXT) . 17

2.1.3. Cryptographic Operation (FCS_COP) . 18

2.1.4. Random Bit Generation (Extended - FCS_RBG_EXT). 41

2.1.5. Cryptographic Salt Generation (Extended - FCS_SLT_EXT) . 43

2.1.6. Cryptographic Key Storage (Extended - FCS_STG_EXT) . 43

2.2. User Data Protection (FDP). 45

2.2.1. Access Control Policy (FDP_ACC) . 45

2.2.2. Access Control Functions (FDP_ACF) . 45

2.2.3. Export from the TOE (Extended - FDP_ETC_EXT) . 47

2.2.4. Factory Reset (Extended - FDP_FRS_EXT) . 47

2.2.5. Import from Outside the TOE (Extended - FDP_ITC_EXT) . 48

2.2.6. Mutable/Immutable Firmware (Extended - FDP_MFW_EXT). 49

2.2.7. Residual Information Protection (FDP_RIP) . 49

2.2.8. Stored data confidentiality with dedicated method . 50

2.2.9. Stored Data Integrity (FDP_SDI) . 51

2.3. Identification and Authentication (FIA) . 51

2.3.1. Authorization Failure Handling (Extended - FIA_AFL_EXT) . 51

2.3.2. Specification of Secrets (FIA_SOS). 52

2.3.3. User Authentication (FIA_UAU) . 54

2.4. Security Management (FMT) . 55

2.4.1. Management of Functions in TSF (Extended - FMT_MOF_EXT) . 55

2.4.2. Management of Security Attributes (FMT_MSA) . 56

2.4.3. Specification of Management Functions (FMT_SMF) . 57

2.4.4. Security Management Roles (FMT_SMR). 57

2.5. Protection of the TSF (FPT). 58

2.5.1. Fail Secure (FPT_FLS) . 58

2.5.2. Debug Modes (Extended - FPT_MOD_EXT) . 58

2

2.5.3. TSF Physical Protection (FPT_PHP). 59

2.5.4. Root of Trust (Extended - FPT_PRO_EXT) . 60

2.5.5. Root of Trust Services (Extended - FPT_ROT_EXT) . 61

2.5.6. Replay Prevention (FPT_RPL). 62

2.5.7. Time Stamps (FPT_STM) . 63

2.5.8. TSF Self Test (FPT_TST) . 64

2.6. Resource Utilization (FRU) . 64

2.6.1. Fault Tolerance (FRU_FLT) . 64

3. Evaluation Activities for Optional Requirements. 66

3.1. Cryptographic Support (FCS) . 66

3.1.1. Entropy for External IT Entities (Extended - FCS_ENT_EXT) . 66

3.1.2. Random Bit Generation (Extended - FCS_RBG_EXT). 66

3.2. Protection of the TSF (FPT). 67

3.2.1. Internal TOE TSF Data Transfer (FPT_ITT) . 67

3.2.2. Root of Trust (Extended - FPT_PRO_EXT) . 68

3.2.3. Root of Trust Services (Extended - FPT_ROT_EXT) . 68

4. Evaluation Activities for Selection-Based Requirements . 70

4.1. Cryptographic Support (FCS) . 70

4.1.1. Cryptographic Key Generation (FCS_CKM) . 70

4.1.2. Cryptographic Key Management (Extended - FCS_CKM_EXT) . 74

4.1.3. Cryptographic Operation (FCS_COP) . 79

4.2. User Data Protection (FDP). 80

4.2.1. Data Authentication (FDP_DAU) . 80

4.2.2. Factory Reset (Extended - FDP_FRS_EXT) . 81

4.2.3. Mutable/Immutable Firmware (Extended - FDP_MFW_EXT). 82

4.3. Identification and Authentication (FIA) . 83

4.3.1. Authorization Failure Handling (Extended - FIA_AFL_EXT) . 83

4.4. Protection of the TSF (FPT). 84

4.4.1. Fail Secure (FPT_FLS) . 84

4.4.2. Replay Detection (FPT_RPL) . 85

4.5. Trusted Path/Channels (FTP) . 85

4.5.1. CCM Protocol (Extended - FTP_CCMP_EXT) . 85

4.5.2. GCM Protocol (Extended - FTP_GCMP_EXT) . 86

4.5.3. Inter-TSF Trusted Channel (Extended - FTP_ITC_EXT). 87

4.5.4. Encrypted Data Communications (Extended - FTP_ITE_EXT) . 87

4.5.5. Physically Protected Channel (Extended - FTP_ITP_EXT) . 88

5. Evaluation Activities for SARs. 89

5.1. ASE: Security Target Evaluation . 89

5.2. ADV: Development . 89

5.2.1. Basic Functional Specification (ADV_FSP.1) . 89

5.3. AGD: Guidance Documents . 93

3

5.3.1. Operational User Guidance (AGD_OPE.1) . 93

5.3.2. Preparative Procedures (AGD_PRE.1) . 94

5.4. ALC: Life-cycle Support . 95

5.4.1. Labelling of the TOE (ALC_CMC.1) . 95

5.4.2. TOE CM coverage (ALC_CMS.1) . 95

5.5. ATE: Tests . 95

5.5.1. Independent Testing - Conformance (ATE_IND.1). 95

5.6. AVA: Vulnerability Assessment . 95

5.6.1. Vulnerability Survey (AVA_VAN.1) . 95

6. Required Supplementary Information . 100

7. References . 101

Appendix A: Vulnerability Analysis. 102

A.1. Sources of vulnerability information . 102

A.1.1. Type 1 Hypotheses—Public-Vulnerability-based . 102

A.1.2. Type 2 Hypotheses—iTC-Sourced. 103

A.1.3. Type 3 Hypotheses—Evaluation-Team-Generated. 103

A.1.4. Type 4 Hypotheses—Tool-Generated. 104

A.2. Process for Evaluator Vulnerability Analysis . 104

A.3. Reporting . 105

Appendix B: Equivalency Considerations . 107

B.1. Introduction . 107

B.2. Evaluator guidance for determining equivalence . 107

B.2.1. Strategy . 107

B.3. Test presentation/Truth in advertising . 108

4

Chapter 1. Introduction

1.1. Technology Area and Scope of Supporting
Document
This Supporting Document (SD) is mandatory for evaluations of products that claim conformance to
any of the following cPPs:

a. collaborative Protection Profile for Dedicated Security Component, Version 1.0.1 - December 13,
2022

A Dedicated Security Component (DSC), in the context of this cPP, is the combination of a hardware
component and its controlling OS or firmware dedicated to the protection and safe use by the rich
OS of Security Data Objects (SDOs) consisting of keys, identities, attributes, and Security Data
Elements (SDEs).

Although Evaluation Activities (EAs) are defined mainly for the evaluators to follow, in general they
will also help developers prepare for evaluation by identifying specific requirements for their
Target of Evaluation (TOE). The specific requirements in EAs may in some cases clarify the meaning
of Security Functional Requirements (SFRs), and may identify particular requirements for the
content of Security Targets (especially the TOE Summary Specification), user guidance
documentation, and possibly required supplementary information (e.g. for entropy analysis or
cryptographic key management architecture).

1.2. Structure of the Document
Evaluation Activities can be defined for both SFRs and Security Assurance Requirements (SARs).
These are defined in separate sections of this SD. The EAs associated with the SFRs are considered
to be interpretations of applying the appropriate SAR activity. For instance, activities associated
with testing are representative of what is required by ATE_IND.1.

If any Evaluation Activity cannot be successfully completed in an evaluation then the overall
verdict for the evaluation is a 'fail'. In rare cases, there may be acceptable reasons why an
Evaluation Activity may be modified or deemed not applicable for a particular TOE, but this must
be agreed with the Certification Body for the evaluation.

In general, if all EAs (for both SFRs and SARs) are successfully completed in an evaluation then it
would be expected that the overall verdict for the evaluation is a 'pass'.

In some cases, the Common Evaluation Methodology (CEM) work units have been interpreted to
require the evaluator to perform specific EAs. In these instances, EAs will be specified in Section 2,
Evaluation Activities for SFRs, Section 5, Evaluation Activities for SARs, and possibly Section 3,
Evaluation Activities for Optional Requirements and Section 4, Evaluation Activities for Selection-
Based Requirements. In cases where there are no CEM interpretations, the CEM activities are to be
used to determine if SARs are satisfied and references to the CEM work units are identified as being
the sole EAs to be performed.

5

Finally, there are cases where EAs have rephrased CEM work units to provide clarity on what is
required. The EAs are reworded for clarity and interpret the CEM work units such that they will
result in more objective and repeatable actions by the evaluator. In these cases, the EA supplements
the CEM work unit. These EAs will be specified in Section 5, Evaluation Activities for SARs.

Note that certain parts of EAs may or may not be required depending on whether certain selections
are made in the Security Target for the corresponding SFR. Underlined text is used to represent
specific selection items.

1.3. Terminology

1.3.1. Glossary

For definitions of standard CC terminology, see [CC] part 1.

Table 1. Glossary

Term Meaning

Access
In the context of SDOs, access to an SDO represents the list of actions
permissible with an SDO, including its generation, use, modification,
propagation, and destruction.

Administrator A type of user that has special privileges to manage the TSF.

Assurance Grounds for confidence that a TOE meets the SFRs [CC1].

Attestation

The process of presenting verifiable evidence describing those
characteristics that affect integrity. Examples of these characteristics are
boot firmware and boot critical data which, combined, describe the way
the DSC booted. [SA]

Attributes Indications of characteristics or properties of the SDEs bound in an SDO.

Authorization Value
Critical data bound to an action by itself or to action on a subject. Such
data, when presented to the TOE, authorizes the action by itself or
authorizes the action on or with the subject respectively.

Authorization Data Collective term for authentication tokens and authorization values.

Authentication Token

Critical data bound to a user. Such data, when presented to the TOE and
successfully verified by it, authenticates the user. The TOE may use the
successful authentication of a user as an authorization to execute an
action on its behalf.

Authenticator A shortened name for Authentication Token.

Boot Critical Data

Critical data that persists across power cycles and determines
characteristics of the DSC. Examples of boot critical data can be DSC
configuration settings, certificates, and the results of measurements
obtained by the root of trust for measurement.

Boot Firmware The first firmware that executes during the boot process.

6

Term Meaning

Chain of Trust
A Chain of Trust is anchored in a Root of Trust and extends a trust
boundary by verifying the authenticity and integrity of successive
components before passing control to those components. [SA]

Client Application Entity who relies on the services provided by the platform or DSC.

Data Encryption Key
An encryption key, usually for a symmetric algorithm, that encrypts data
that is not keying material.

Integrity Assurance of trustworthiness and accuracy.

Immutable Unchangeable.

Key Encryption Key
An encryption key that encrypts other keying material. This is sometimes
called a key wrapping key. A KEK can be either symmetric or asymmetric.

Known Answer Tests
(KATs)

Test vectors or data generated to determine the correctness of an
implementation.

Operator
Human being who has physical possession of the platform on which the
DSC is located. [GD]

Owner
Human being who controls or manages the platform on which the DSC is
located. May be remote. [GD]

Platform A platform consists of the hardware and firmware of a computing entity.

Pre-installed SDO
An SDO installed on the DSC by the manufacturer. The SDO consists of an
SDE and attributes, which if not explicitly expressed in a data structure,
are implicit based on the functions that have exclusive access to the SDE.

Privileged Function

Functions restricted to the role of administrator, which may include, but
are not limited to, provisioning keys, provisioning user authorization
values, de-provisioning user authorization values, provisioning
administrator authorization values, changing authorization values,
disabling key escrow, and configuring cryptography.

Protected Data Blob
Data in an encrypted structure that protects its confidentiality or
integrity (as required by the context in which it is used).

Protected Storage

Refers to DSC hardware used to store SDEs or SDOs, and provide integrity
protection for all items and confidentiality for those items that require it.
Protected Storage may also refer to storage external to the DSC, which is
usually encrypted by keys maintained by the DSC’s internal protected
storage capabilities.

Protections

Mechanisms that ensure components of a DSC (executable firmware code
and critical data) remain in a state of integrity and are protected from
modification outside of authorized, authenticated processes and entities.
[NIST-ROTM]

Remote Secure Channel
Logical channel to the DSC from a remote entity, which cryptographically
protects the confidentiality and integrity of the channel content.

7

Term Meaning

Required
Supplementary
Information

Information that is not necessarily included in the Security Target or
operational guidance, and that may not necessarily be public. Examples
of such information could be entropy analysis, or description of a
cryptographic key management architecture used in (or in support of)
the TOE. The requirement for any such supplementary information will
be identified in the relevant cPP (see description in Section 6).

Root Encryption Key An encryption key that serves as the anchor of a hierarchy of keys.

Root of Trust
A root of trust performs one or more security specific functions;
establishing the foundation on which all trust in a system is placed.
[NIST-ROTM]

Root of Trust for
Authorization

(As defined by [GP_ROT]) The Root of Trust for Authorization provides
reliable capabilities to assess authorization tokens and determine
whether or not they satisfy policies for access control.

Root of Trust for
Confidentiality

(As defined by [GP_ROT]) The Root of Trust for Confidentiality maintains
shielded locations for the purpose of storing sensitive data, such as secret
keys and passwords.

Root of Trust for
Integrity

(As defined by [GP_ROT]) The Root of Trust for Integrity maintains
shielded locations for the purpose of storing and protecting the integrity
of non-secret critical security parameters and platform characteristics.
Critical security parameters include, but are not limited to, authorization
values, public keys, and public key certificates.

Root of Trust for
Measurement

(As defined by [GP_ROT]) The Root of Trust for Measurement provides the
ability to reliably create platform characteristics.

Root of Trust for
Reporting

(As defined by [GP_ROT]) The Root of Trust for Reporting reliably reports
platform characteristics. It provides an interface that limits its services to
providing reports on its platform characteristics authenticated by a
platform identity.

Root of Trust for
Storage

A root of trust that acts as the Root of Trust for Confidentiality and the
Root of Trust for Integrity.

Root of Trust for
Update

A root of trust responsible for updating the firmware.

Root of Trust for
Verification

A root of trust responsible for verifying digital signatures.

Security Data Element
A Critical Security Parameter, such as a cryptographic key or
authorization token.

Security Data Object
A Security Data Object (SDO) may include one or more SDEs. SDOs bind
SDEs with a set of attributes.

Symmetric Encryption
Key

A value intend to input as a key to a symmetric encryption algorithm,
such as AES.

8

Term Meaning

System
A system consists of the platform hardware and firmware in addition to
the higher-level software running on top of it (kernel, user-space
processes, etc.).

Target of Evaluation
A set of software, firmware or hardware possibly accompanied by
guidance. [CC1]

TOE Security
Functionality (TSF)

A set consisting of all hardware, software, and firmware of the TOE that
must be relied upon for the correct enforcement of the SFRs. [CC1]

Trusted Local Channel
Physical channel to the DSC within the platform of which the DSC is a
part, which is protected by the operational environment to ensure
confidentiality and integrity.

TSF Data
Data for the operation of the TSF upon which the enforcement of the
requirements relies.

User An administrator or client application.

1.3.2. Acronyms

Table 2. Acronyms

Acronym Meaning

AES Advanced Encryption Standard

CA Client Application

CBC Cipher Block Chaining

CCM Counter with CBC-Message Authentication Code

CCMP CCM Protocol

CPU Central Processing Unit

CSP Critical Security Parameter

DAR Data At Rest

DEK Data Encryption Key

DH Diffie-Hellman

DSA Digital Signature Algorithm

ECDH Elliptic Curve Diffie Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

EEPROM Electrically Erasable Programmable Read-Only Memory

FIPS Federal Information Processing Standards

FQDN Fully Qualified Domain Name

GCM Galois Counter Mode

HMAC Keyed-Hash Message Authentication Code

9

Acronym Meaning

HTTPS Hypertext Transfer Protocol Secure

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IPsec Internet Protocol Security

KEK Key Encryption Key

KMAC KECCACK Message Authentication Code

KMD Key Management Document

NIST National Institute of Standards and Technology

OS Operating System

PBKDF Password-Based Key Derivation Function

PP Protection Profile

RA Registration Authority

RBG Random Bit Generator

REK Root Encryption Key

ROM Read-only memory

RSA Rivest Shamir Adleman Algorithm

SDE Security Data Element

SDO Security Data Object

SFP Security Function Policy

SFR Security Functional Requirement

SHA Secure Hash Algorithm

SK Symmetric Key or Symmetric Encryption Key

SPI Security Parameter Index

SSH Secure Shell

ST Security Target

TLS Transport Layer Security

TOE Target of Evaluation

TSF TOE Security Functionality

TSS TOE Summary Specification

USB Universal Serial Bus

1.4. Test Environment Note
Many of the test EAs in this Supporting Document require the evaluator to directly exercise low-

10

level interfaces to the DSC to manipulate it in a manner that may not be feasible with the
commercially-available (production) model of the DSC and associated tools. When this is the case,
the TOE developer may provide models of the DSC and associated tools which allow for the
required tests to be executed by the evaluator (or as necessary, executed by the TOE developer and
observed by the evaluator).

For any tests that are executed using non-commercially-available versions of the TOE provided by
the developer, the evaluator shall ensure the following:

• The test report shall document the measures the evaluator took to gain assurance that if the
TOE itself is modified to allow for certain tests to be performed, the security of the TOE is not
reduced in the unmodified TOE (i.e. if the TOE is modified to use a special firmware build, this
should not create a situation where the modified build enforces required security functionality
that the unmodified build does not).

• Any tools used to conduct the required testing shall produce sufficient evidence to demonstrate
that the test was successful (e.g., if a tool is designed to erase a particular key, it should also
attempt to perform some operation that requires the use of that key to provide evidence that the
key destruction succeeded).

• The evaluator shall ensure that the tool actually performs the intended action and does not
create a contrived outcome that imitates the results of a passing test without performing the
actual operation (e.g. if a tool is designed to erase a particular key and output its value as proof
of this, the tool should be obtaining the actual key value and not simply returning a static
result).

The test EAs for individual SFRs identify cases where developer tools may be needed to execute the
test as written.

11

Chapter 2. Evaluation Activities for SFRs
The EAs presented in this section capture the actions the evaluator performs to address technology
specific aspects covering specific SARs (e.g., ASE_TSS.1, ADV_FSP.1, AGD_OPE.1, and ATE_IND.1) -
this is in addition to the CEM work units that are performed in Section 5, Evaluation Activities for
SARs.

Regarding design descriptions (designated by the subsections labelled TSS, as well as any required
supplementary material that may be treated as proprietary designated by the subsections labelled
KMD), the evaluator must ensure there is specific information that satisfies the EA. For findings
regarding the TSS and KMD sections, the evaluator’s verdicts will be associated with the CEM work
unit ASE_TSS.1-1. Evaluator verdicts associated with the supplementary evidence will also be
associated with ASE_TSS.1-1, since the requirement to provide such evidence is specified in ASE in
the cPP.

For ensuring the guidance documentation provides sufficient information for the
administrators/users as it pertains to SFRs, the evaluator’s verdicts will be associated with CEM
work units ADV_FSP.1-7, AGD_OPE.1-4, and AGD_OPE.1-5.

Finally, the subsection labelled Tests is where the iTC has determined that testing of the product in
the context of the associated SFR is necessary. While the evaluator is expected to develop tests,
there may be instances where it is more practical for the developer to construct tests, or where the
developer may have existing tests, as mentioned in section 1.4 above. Therefore, it is acceptable for
the evaluator to witness developer-generated tests in lieu of executing the tests. In this case, the
evaluator must ensure the developer’s tests are executing both in the manner declared by the
developer and as mandated by the EA. The CEM work units that are associated with the EAs
specified in this section are: ATE_IND.1-3, ATE_IND.1-4, ATE_IND.1-5, ATE_IND.1-6, and ATE_IND.1-7.

2.1. Cryptographic Support (FCS)

2.1.1. Cryptographic Key Management (FCS_CKM)

2.1.1.1. FCS_CKM.1 Cryptographic Key Generation

2.1.1.1.1. TSS

The evaluator shall examine the TSS to verify that it describes how the TOE obtains a cryptographic
key through importation of keys from external sources as specified in FDP_ITC_EXT.1 and
FDP_ITC_EXT.2. The evaluator shall also examine the TSS to determine whether it describes any
supported asymmetric or symmetric key generation functionality consistent with the claims made
in FCS_CKM.1.1.

2.1.1.1.2. AGD

The evaluator shall verify that the guidance instructs the administrator how to configure the TOE to
use the selected key types for all uses identified in the ST.

12

2.1.1.1.3. Test

Testing for this function is performed in conjunction with FDP_ITC_EXT.1 and FDP_ITC_EXT.2. If
asymmetric or symmetric key generation functionality is claimed, testing for this function is also
performed in conjunction with FCS_CKM.1/AK or FCS_CKM.1/SK.

2.1.1.1.4. KMD

The evaluator shall confirm that the KMD describes:

• The parsing interface and how the TSF imports keys for internal use

• The asymmetric key generation interfaces and how the TSF internally creates asymmetric keys,
if claimed

• The symmetric key generation interfaces and how the TSF internally creates symmetric keys, if
claimed

If the TOE uses the generated key in a key chain/hierarchy then the KMD shall describe how the key
is used as part of the key chain/hierarchy.

2.1.1.2. FCS_CKM.1 Cryptographic Key Generation

2.1.1.2.1. TSS

The evaluator shall examine the TSS to determine whether it describes any supported key
generation or derivation functionality consistent with the claims made in FCS_CKM.1.1.

[conditional] If the key is generated according to an asymmetric key scheme, the evaluator shall
review the TSS to determine that it describes how the functionality described by FCS_CKM.1/AKG is
invoked. The evaluator uses the description of the key generation functionality in FCS_CKM.1/AKG
or documentation available for the operational environment to determine that the key strength
being requested is greater than or equal to 112 bits.

[conditional] If the key is generated according to a symmetric key scheme, the evaluator shall
review the TSS to determine that it describes how the functionality described by FCS_CKM.1/SKG is
invoked. The evaluator uses the description of the RBG functionality in FCS_RBG_EXT.1, or the key
derivation functionality in either FCS_CKM.5 or FCS_COP.1/PBKDF, depending on the key generation
method claimed, to determine that the key size being requested is greater than or equal to the key
size and mode to be used for the encryption/decryption of the data.

[conditional] If the key is formed from derivation, the evaluator shall verify that the TSS describes
the method of derivation and that this method is consistent with FCS_CKM.5.

2.1.1.2.2. AGD

There are no guidance evaluation activities for this component.

2.1.1.2.3. Test

The evaluator shall iterate through each of the methods selected by the ST and perform all
applicable tests from the selected methods.

13

2.1.1.2.4. KMD

The evaluator shall iterate through each of the methods selected by the ST and confirm that the
KMD describes the applicable selected methods.

2.1.1.3. FCS_CKM.2 Cryptographic Key Establishment

2.1.1.3.1. TSS

The evaluator shall examine the TSS to ensure that ST supports at least one key establishment
scheme. The evaluator also ensures that for each key establishment scheme selected by the ST in
FCS_CKM.2.1 it also supports one or more corresponding methods selected in FCS_COP.1/KAT. If the
ST selects RSA in FCS_CKM.2.1, then the TOE must support one or more of "KAS1," or "KAS2," "KTS-
OAEP," from FCS_COP.1/KAT. If the ST selects elliptic curve-based, then the TOE must support one or
more of "ECDH-NIST" or "ECDH-BPC" from FCS_COP.1/KAT. If the ST selects Diffie-Hellman-based key
establishment, then the TOE must support "DH" from FCS_COP.1/KAT.

2.1.1.3.2. AGD

The evaluator shall verify that the guidance instructs the administrator how to configure the TOE to
use the selected key establishment scheme .

2.1.1.3.3. Test

Testing for this SFR is performed under the corresponding functions in FCS_COP.1/KAT.

2.1.1.3.4. KMD

There are no KMD evaluation activities for this component.

2.1.1.4. FCS_CKM.4 Cryptographic Key Destruction

2.1.1.4.1. TSS

The evaluator shall examine the TSS to ensure it lists all relevant keys and keying material
(describing the source of the data, all memory types in which the data is stored (covering storage
both during and outside of a session, and both plaintext and non-plaintext forms of the data)), all
relevant destruction situations (including the point in time at which the destruction occurs; e.g.
factory reset or device wipe function, change of authorization data, change of DEK, completion of
use of an intermediate key) and the destruction method used in each case. The evaluator shall
confirm that the description of the data and storage locations is consistent with the functions
carried out by the TOE (e.g. that all keys in the key chain are accounted for[1]).

The evaluator shall check that the TSS identifies any configurations or circumstances that may not
conform to the key destruction requirement (see further discussion in the AGD section below). Note
that reference may be made to the AGD for description of the detail of such cases where destruction
may be prevented or delayed.

Where the ST specifies the use of "a value that does not contain any sensitive data" to overwrite
keys, the evaluator shall examine the TSS to ensure that it describes how that pattern is obtained
and used, and that this justifies the claim that the pattern does not contain any sensitive data.

14

2.1.1.4.2. AGD

The evaluator shall check that the guidance documentation for the TOE requires users to ensure
that the TOE remains under the user’s control while a session is active.

A TOE may be subject to situations that could prevent or delay data destruction in some cases. The
evaluator shall check that the guidance documentation identifies configurations or circumstances
that may not strictly conform to the key destruction requirement, and that this description is
consistent with the relevant parts of the TSS (and KMD). The evaluator shall check that the
guidance documentation provides guidance on situations where key destruction may be delayed at
the physical layer, identifying any additional mitigation actions for the user (e.g. there might be
some operation the user can invoke, or the user might be advised to retain control of the device for
some particular time to maximise the probability that garbage collection will have occurred).

For example, when the TOE does not have full access to the physical memory, it is possible that the
storage may implement wear-levelling and garbage collection. This may result in additional copies
of the data that are logically inaccessible but persist physically. Where available, the TOE might
then describe use of the TRIM command[2] and garbage collection to destroy these persistent copies
upon their deletion (this would be explained in TSS and guidance documentation).

2.1.1.4.3. Test

The following tests require the developer to provide access to a test platform that provides the
evaluator with tools that are typically not found on factory products.

The evaluator shall perform the following tests:

Test 1: Applied to each key or keying material held as plaintext in volatile memory and subject to
destruction by overwrite by the TOE (whether or not the plaintext value is subsequently encrypted
for storage in volatile or non-volatile memory).

The evaluator shall:

1. Record the value of the key or keying material.

2. Cause the TOE to dump the SDO/SDE memory of the TOE into a binary file.

3. Search the content of the binary file created in Step #2. to locate all instances of the known key
value from Step #1.

Note that the primary purpose of Step #3. is to demonstrate that appropriate search commands
are being used for Steps #8. and #9.

4. Cause the TOE to perform normal cryptographic processing with the key from Step #1.

5. Cause the TOE to destroy the key.

6. Cause the TOE to stop execution but not exit.

7. Cause the TOE to dump the SDO/SDE memory of the TOE into a binary file.

8. Search the content of the binary file created in Step #7. for instances of the known key value
from Step #1.

9. Break the key value from Step #1. into an evaluator-chosen set of fragments and perform a

15

search using each fragment. (Note that the evaluator shall first confirm with the developer how
the key is normally stored, in order to choose fragment sizes that are the same or smaller than
any fragmentation of the data that may be implemented by the TOE. The endianness or byte-
order should also be taken into account in the search.)

Steps #1.-8. ensure that the complete key does not exist anywhere in volatile memory. If a copy is
found, then the test fails.

Step #9 ensures that partial key fragments do not remain in memory. If the evaluator finds a 32-or-
greater-consecutive-bit fragment, then fail immediately. Otherwise, there is a chance that it is not
within the context of a key (e.g., some random bits that happen to match). If this is the case the test
should be repeated with a different key in Step #1. If a fragment is also found in this repeated run
then the test fails unless the developer provides a reasonable explanation for the collision, then the
evaluator may give a pass on this test.

Test 2: Applied to each key and keying material held in non-volatile memory and subject to
destruction by overwrite by the TOE.

1. Record the value of the key or keying material.

2. Cause the TOE to perform normal cryptographic processing with the key from Step #1.

3. Search the non-volatile memory the key was stored in for instances of the known key value
from Step #1.

Note that the primary purpose of Step #3. is to demonstrate that appropriate search commands
are being used for Steps #5 and #6.

4. Cause the TOE to destroy the key.

5. Search the non-volatile memory in which the key was stored for instances of the known key
value from Step #1. If a copy is found, then the test fails.

6. Break the key value from Step #1. into an evaluator-chosen set of fragments and perform a
search using each fragment. (Note that the evaluator shall first confirm with the developer how
the key is normally stored, in order to choose fragment sizes that are the same or smaller than
any fragmentation of the data that may be implemented by the TOE. The endianness or byte-
order should also be taken into account in the search).

Step #6 ensures that partial key fragments do not remain in non-volatile memory. If the evaluator
finds a 32-or-greater-consecutive-bit fragment, then fail immediately. Otherwise, there is a chance
that it is not within the context of a key (e.g., some random bits that happen to match). If this is the
case the test should be repeated with a different key in Step #1. If a fragment is also found in this
repeated run then the test fails unless the developer provides a reasonable explanation for the
collision, then the evaluator may give a pass on this test.

Test 3: Applied to each key and keying material held in non-volatile memory and subject to
destruction by overwrite by the TOE.

1. Record memory of the key or keying material.

2. Cause the TOE to perform normal cryptographic processing with the key from Step #1.

16

3. Cause the TOE to destroy the key. Record the value to be used for the overwrite of the key.

4. Examine the memory from Step #1. to ensure the appropriate pattern (recorded in Step #3) is
used.

The test succeeds if correct pattern is found in the memory location. If the pattern is not found,
then the test fails.

2.1.1.4.4. KMD

The evaluator shall examine the KMD to verify that it identifies and describes the interfaces that
are used to service commands to read/write memory. The evaluator shall examine the interface
description for each different media type to ensure that the interface supports the selections made
by the ST author.

The evaluator shall examine the KMD to ensure that all keys and keying material identified in the
TSS and KMD have been accounted for.

Note that where selections include 'destruction of reference to the key directly followed by a
request for garbage collection' (for volatile memory) then the evaluator shall examine the KMD to
ensure that it explains the nature of the destruction of the reference, the request for garbage
collection, and of the garbage collection process itself.

2.1.2. Cryptographic Key Management (Extended - FCS_CKM_EXT)

2.1.2.1. FCS_CKM_EXT.4 Cryptographic Key and Key Material Destruction Timing

2.1.2.1.1. TSS

The evaluator shall verify the TSS provides a high-level description of what it means for keys and
key material to be no longer needed and when this data should be expected to be destroyed.

2.1.2.1.2. AGD

There are no guidance evaluation activities for this component.

2.1.2.1.3. Test

There are no test evaluation activities for this component.

2.1.2.1.4. KMD

The evaluator shall verify that the KMD includes a description of the areas where keys and key
material reside and when this data is no longer needed.

The evaluator shall verify that the KMD includes a key lifecycle that includes a description where
key materials reside, how the key materials are used, how it is determined that keys and key
material are no longer needed, and how the data is destroyed once it is no longer needed. The
evaluator shall also verify that all key destruction operations are performed in a manner specified
by FCS_CKM.4.

17

2.1.3. Cryptographic Operation (FCS_COP)

2.1.3.1. FCS_COP.1/Hash Cryptographic Operation (Hashing)

2.1.3.1.1. TSS

The evaluator shall check that the association of the hash function with other TSF cryptographic
functions (for example, the digital signature verification function) is documented in the TSS. The
evaluator shall also check that the TSS identifies whether the implementation is bit-oriented or
byte-oriented.

2.1.3.1.2. AGD

The evaluator checks the AGD documents to determine that any configuration that is required to
configure the required hash sizes is present. The evaluator also checks the AGD documents to
confirm that the instructions for establishing the evaluated configuration use only those hash
algorithms selected in the ST.

2.1.3.1.3. Test

The following tests require the developer to provide access to a test platform that provides the
evaluator with tools that are typically not found on factory products.

All test results should be compared to a known-good implementation to ensure the correct result is
produced by the TSF.

SHA-1 and SHA-2 Tests

The tests below are derived from the "The Secure Hash Algorithm Validation System (SHAVS),
Updated: May 21, 2014" from the National Institute of Standards and Technology.

The TSF hashing functions can be implemented with one of two orientations. The first is a byte-
oriented implementation: this hashes messages that are an integral number of bytes in length (i.e.,
the length (in bits) of the message to be hashed is divisible by 8). The second is a bit-oriented
implementation: this hashes messages of arbitrary length. Separate tests for each orientation are
given below.

The evaluator shall perform all of the following tests for each hash algorithm and orientation
implemented by the TSF and used to satisfy the requirements of this PP. The evaluator shall
compare digest values produced by a known-good SHA implementation against those generated by
running the same values through the TSF.

Short Messages Test, Bit-oriented Implementation

The evaluators devise an input set consisting of m+1 messages, where m is the block length of the
hash algorithm in bits (see SHA Properties Table). The length of the messages ranges sequentially
from 0 to m bits. The message text shall be pseudo-randomly generated. The evaluators compute
the message digest for each of the messages and ensure that the correct result is produced when the
messages are provided to the TSF.

Short Messages Test, Byte-oriented Implementation

18

The evaluators devise an input set consisting of m/8+1 messages, where m is the block length of the
hash algorithm in bits (see SHA Properties Table). The length of the messages ranges sequentially
from 0 to m/8 bytes, with each message being an integral number of bytes. The message text shall
be pseudo-randomly generated. The evaluators compute the message digest for each of the
messages and ensure that the correct result is produced when the messages are provided to the
TSF.

Selected Long Messages Test, Bit-oriented Implementation

The evaluators devise an input set consisting of m messages, where m is the block length of the
hash algorithm in bits (see SHA Properties Table). The length of the ith message is m + 99*i, where 1
≤ i ≤ m. The message text shall be pseudo-randomly generated. The evaluators compute the message
digest for each of the messages and ensure that the correct result is produced when the messages
are provided to the TSF.

Selected Long Messages Test, Byte-oriented Implementation

The evaluators devise an input set consisting of m/8 messages, where m is the block length of the
hash algorithm in bits (see SHA Properties Table). The length of the ith message is m + 8*99*i,
where 1 ≤ i ≤ m/8. The message text shall be pseudo-randomly generated. The evaluators compute
the message digest for each of the messages and ensure that the correct result is produced when the
messages are provided to the TSF.

Pseudo-randomly Generated Messages Test

The evaluators randomly generate a seed that is n bits long, where n is the length of the message
digest produced by the hash function to be tested. This seed is used by a pseudorandom function to
generate 100,000 message digests. One hundred of the digests (every 1,000th digest) are recorded as
checkpoints by following the algorithm provided in Figure 1 of SHAVS, section 6.4. The TOE then
uses the same procedure to generate the same 100,000 message digests and 100 checkpoint values.
The evaluators then ensure that the correct result is produced when the messages are provided to
the TSF.

SHA-3 Tests

The tests below are derived from the The Secure Hash Algorithm-3 Validation System (SHA3VS),
Updated: April 7, 2016, from the National Institute of Standards and Technology.

For each SHA-3-XXX implementation, XXX represents d, the digest length in bits. The capacity, c, is
equal to 2d bits. The rate is equal to 1600-c bits.

The TSF hashing functions can be implemented with one of two orientations. The first is a bit-
oriented mode that hashes messages of arbitrary length. The second is a byte-oriented mode that
hashes messages that are an integral number of bytes in length (i.e., the length (in bits) of the
message to be hashed is divisible by 8). Separate tests for each orientation are given below.

The evaluator shall perform all of the following tests for each hash algorithm and orientation
implemented by the TSF and used to satisfy the requirements of this PP. The evaluator shall
compare digest values produced by a known-good SHA-3 implementation against those generated
by running the same values through the TSF.

19

Short Messages Test, Bit-oriented Mode

The evaluators devise an input set consisting of rate+1 short messages. The length of the messages
ranges sequentially from 0 to rate bits. The message text shall be pseudo-randomly generated. The
evaluators compute the message digest for each of the messages and ensure that the correct result
is produced when the messages are provided to the TSF. The message of length 0 is omitted if the
TOE does not support zero-length messages.

Short Messages Test, Byte-oriented Mode

The evaluators devise an input set consisting of rate/8+1 short messages. The length of the messages
ranges sequentially from 0 to rate/8 bytes, with each message being an integral number of bytes.
The message text shall be pseudo-randomly generated. The evaluators compute the message digest
for each of the messages and ensure that the correct result is produced when the messages are
provided to the TSF. The message of length 0 is omitted if the TOE does not support zero-length
messages.

Selected Long Messages Test, Bit-oriented Mode

The evaluators devise an input set consisting of 100 long messages ranging in size from
rate+(rate+1) to rate+(100*(rate+1)), incrementing by rate+1. (For example, SHA-3-256 has a rate of
1088 bits. Therefore, 100 messages will be generated with lengths 2177, 3266, …, 109988 bits.) The
message text shall be pseudo-randomly generated. The evaluators compute the message digest for
each of the messages and ensure that the correct result is produced when the messages are
provided to the TSF.

Selected Long Messages Test, Byte-oriented Mode

The evaluators devise an input set consisting of 100 messages ranging in size from (rate+(rate+8)) to
(rate+100*(rate+8)), incrementing by rate+8. (For example, SHA-3-256 has a rate of 1088 bits.
Therefore 100 messages will be generated of lengths 2184, 3280, 4376, …, 110688 bits.) The message
text shall be pseudo-randomly generated. The evaluators compute the message digest for each of
the messages and ensure that the correct result is produced when the messages are provided to the
TSF.

Pseudo-randomly Generated Messages (Monte Carlo) Test, Byte-oriented Mode

The evaluators supply a seed of d bits (where d is the length of the message digest produced by the
hash function to be tested. This seed is used by a pseudorandom function to generate 100,000
message digests. One hundred of the digests (every 1000th digest) are recorded as checkpoints. The
TOE then uses the same procedure to generate the same 100,000 message digests and 100
checkpoint values. The evaluators then compare the results generated ensure that the correct result
is produced when the messages are generated by the TSF.

2.1.3.1.4. KMD

There are no KMD evaluation activities for this component.

20

2.1.3.2. FCS_COP.1/HMAC Cryptographic Operation (Keyed Hash)

2.1.3.2.1. TSS

The evaluator shall examine the TSS to ensure that it specifies the following values used by the
HMAC and KMAC functions: output MAC length used.

2.1.3.2.2. AGD

There are no guidance evaluation activities for this component.

2.1.3.2.3. Test

The following test requires the developer to provide access to a test platform that provides the
evaluator with tools that are typically not found on factory products.

This test is derived from The Keyed-Hash Message Authentication Code Validation System
(HMACVS), updated 6 May 2016.

The evaluator shall provide 15 sets of messages and keys for each selected hash algorithm and hash
length/key size/MAC size combination. The evaluator shall have the TSF generate HMAC or KMAC
tags for these sets of test data. The evaluator shall verify that the resulting HMAC or KMAC tags
match the results from submitting the same inputs to a known-good implementation of the HMAC
or KMAC function, having the same characteristics.

2.1.3.2.4. KMD

There are no KMD evaluation activities for this component.

2.1.3.3. FCS_COP.1/KAT Cryptographic Operation (Key Agreement/Transport)

2.1.3.3.1. TSS

The evaluator shall ensure that the selected RSA and ECDH key agreement/transport schemes
correspond to the key generation schemes selected in FCS_CKM.1/AK, and the key establishment
schemes selected in FCS_CKM.2 If the ST selects DH, the TSS shall describe how the implementation
meets the relevant sections of RFC 3526 (Section 3-7) and RFC 7919 (Appendices A.1-A.5). If the ST
selects ECIES, the TSS shall describe the key sizes and algorithms (e.g. elliptic curve point
multiplication, ECDH with either NIST or Brainpool curves, AES in a mode permitted by
FCS_COP.1/SKC, a SHA-2 hash algorithm permitted by FCS_COP.1/Hash, and a MAC algorithm
permitted by FCS_COP.1/HMAC) that are supported for the ECIES implementation.

The evaluator shall ensure that, for each key agreement/transport scheme, the size of the derived
keying material is at least the same as the intended strength of the key agreement/transport
scheme, and where feasible this should be twice the intended security strength of the key
agreement/transport scheme.

Table 2 of NIST SP 800-57 identifies the key strengths for the different algorithms that can be used
for the various key agreement/transport schemes.

21

2.1.3.3.2. AGD

There are no guidance evaluation activities for this component.

2.1.3.3.3. Test

The following tests require the developer to provide access to a test platform that provides the
evaluator with tools that are typically not found on factory products.

The evaluator shall verify the implementation of the key generation routines of the supported
schemes using the following tests:

If ECDH-NIST or ECDH-BPC is claimed:

SP800-56A Key Agreement Schemes

The evaluator shall verify a TOE’s implementation of SP800-56A key agreement schemes using the
following function and validity tests. These validation tests for each key agreement scheme verify
that a TOE has implemented the components of the key agreement scheme according to the
specifications in the recommendation. These components include the calculation of the DLC
primitives (the shared secret value Z) and the calculation of the derived keying material (DKM) via
the Key Derivation Function (KDF). If key confirmation is supported, the evaluator shall also verify
that the components of key confirmation have been implemented correctly, using the test
procedures described below. This includes the parsing of the DKM, the generation of MACdata and
the calculation of MACtag.

Function Test

The Function test verifies the ability of the TOE to implement the key agreement schemes correctly.
To conduct this test the evaluator shall generate or obtain test vectors from a known good
implementation of the TOE supported schemes. For each supported key agreement scheme-key
agreement role combination, KDF type, and, if supported, key confirmation role-key confirmation
type combination, the tester shall generate 10 sets of test vectors. The data set consists of one set of
domain parameter values (FFC) or the NIST approved curve (ECC) per 10 sets of public keys. These
keys are static, ephemeral or both depending on the scheme being tested.

The evaluator shall obtain the DKM, the corresponding TOE’s public keys (static or ephemeral), the
MAC tags, and any inputs used in the KDF, such as the Other Information field OI and TOE id fields.

If the TOE does not use a KDF defined in SP 800-56A, the evaluator shall obtain only the public keys
and the hashed value of the shared secret.

The evaluator shall verify the correctness of the TSF’s implementation of a given scheme by using a
known good implementation to calculate the shared secret value, derive the keying material DKM,
and compare hashes or MAC tags generated from these values.

If key confirmation is supported, the TSF shall perform the above for each implemented approved
MAC algorithm.

Validity Test

22

The Validity test verifies the ability of the TOE to recognize another party’s valid and invalid key
agreement results with or without key confirmation. To conduct this test, the evaluator shall obtain
a list of the supporting cryptographic functions included in the SP800-56A key agreement
implementation to determine which errors the TOE should be able to recognize. The evaluator
generates a set of 24 (FFC) or 30 (ECC) test vectors consisting of data sets including domain
parameter values or NIST approved curves, the evaluator’s public keys, the TOE’s public/private key
pairs, MACTag, and any inputs used in the KDF, such as the other info and TOE id fields.

The evaluator shall inject an error in some of the test vectors to test that the TOE recognizes invalid
key agreement results caused by the following fields being incorrect: the shared secret value Z, the
DKM, the other information field OI, the data to be MACed, or the generated MACTag. If the TOE
contains the full or partial (only ECC) public key validation, The evaluator shall also individually
inject errors in both parties' static public keys, both parties' ephemeral public keys and the TOE’s
static private key to assure the TOE detects errors in the public key validation function or the
partial key validation function (in ECC only). At least two of the test vectors shall remain
unmodified and therefore should result in valid key agreement results (they should pass).

The TOE shall use these modified test vectors to emulate the key agreement scheme using the
corresponding parameters. The evaluator shall compare the TOE’s results with the results using a
known good implementation verifying that the TOE detects these errors.

If KAS1, KAS2, KTS-OAEP, or RSAES-PKCS1-v1_5 is claimed:

SP800-56B and PKCS#1 Key Establishment Schemes

If the TOE acts as a sender, the following evaluation activity shall be performed to ensure the
proper operation of every TOE supported combination of RSA-based key establishment scheme:

To conduct this test the evaluator shall generate or obtain test vectors from a known good
implementation of the TOE supported schemes. For each combination of supported key
establishment scheme and its options (with or without key confirmation if supported, for each
supported key confirmation MAC function if key confirmation is supported, and for each supported
mask generation function if KTS-OAEP is supported), the tester shall generate 10 sets of test vectors.
Each test vector shall include the RSA public key, the plaintext keying material, any additional input
parameters if applicable, the MacKey and MacTag if key confirmation is incorporated, and the
outputted ciphertext. For each test vector, the evaluator shall perform a key establishment
encryption operation on the TOE with the same inputs (in cases where key confirmation is
incorporated, the test shall use the MacKey from the test vector instead of the randomly generated
MacKey used in normal operation) and ensure that the outputted ciphertext is equivalent to the
ciphertext in the test vector.

If the TOE acts as a receiver, the following evaluation activities shall be performed to ensure the
proper operation of every TOE supported combination of RSA-based key establishment scheme:

To conduct this test the evaluator shall generate or obtain test vectors from a known good
implementation of the TOE supported schemes. For each combination of supported key
establishment scheme and its options (with our without key confirmation if supported, for each
supported key confirmation MAC function if key confirmation is supported, and for each supported
mask generation function if KTSOAEP is supported), the tester shall generate 10 sets of test vectors.

23

Each test vector shall include the RSA private key, the plaintext keying material (KeyData), any
additional input parameters if applicable, the MacTag in cases where key confirmation is
incorporated, and the outputted ciphertext. For each test vector, the evaluator shall perform the
key establishment decryption operation on the TOE and ensure that the outputted plaintext keying
material (KeyData) is equivalent to the plain text keying material in the test vector. In cases where
key confirmation is incorporated, the evaluator shall perform the key confirmation steps and
ensure that the outputted MacTag is equivalent to the MacTag in the test vector.

The evaluator shall ensure that the TSS describes how the TOE handles decryption errors. In
accordance with NIST Special Publication 800-56B, the TOE must not reveal the particular error that
occurred, either through the contents of any outputted or logged error message or through timing
variations. If KTS-OAEP is supported, the evaluator shall create separate contrived ciphertext
values that trigger each of the three decryption error checks described in NIST Special Publication
800-56B section 7.2.2.3, ensure that each decryption attempt results in an error, and ensure that any
outputted or logged error message is identical for each.

DH:

The evaluator shall verify the correctness of each TSF implementation of each supported Diffie-
Hellman group by comparison with a known good implementation.

Curve25519:

The evaluator shall verify a TOE’s implementation of the key agreement scheme using the following
Function and Validity tests. These validation tests for each key agreement scheme verify that a TOE
has implemented the components of the key agreement scheme according to the specification.
These components include the calculation of the shared secret K and the hash of K.

Function Test

The Function test verifies the ability of the TOE to implement the key agreement schemes correctly.
To conduct this test the evaluator shall generate or obtain test vectors from a known good
implementation of the TOE supported schemes. For each supported key agreement role and hash
function combination, the tester shall generate 10 sets of public keys. These keys are static,
ephemeral or both depending on the scheme being tested.

The evaluator shall obtain the shared secret value K, and the hash of K. The evaluator shall verify
the correctness of the TSF’s implementation of a given scheme by using a known good
implementation to calculate the shared secret value K and compare the hash generated from this
value.

Validity Test

The Validity test verifies the ability of the TOE to recognize another party’s valid and invalid key
agreement results. To conduct this test, the evaluator generates a set of 30 test vectors consisting of
data sets including the evaluator’s public keys and the TOE’s public/private key pairs.

The evaluator shall inject an error in some of the test vectors to test that the TOE recognizes invalid
key agreement results caused by the following fields being incorrect: the shared secret value K or
the hash of K. At least two of the test vectors shall remain unmodified and therefore should result

24

in valid key agreement results (they should pass).

The TOE shall use these modified test vectors to emulate the key agreement scheme using the
corresponding parameters. The evaluator shall compare the TOE’s results with the results using a
known good implementation verifying that the TOE detects these errors.

ECIES:

The evaluator shall verify the correctness of each TSF implementation of each supported use of
ECIES by comparison with a known good implementation.

2.1.3.3.4. KMD

There are no KMD evaluation activities for this component.

2.1.3.4. FCS_COP.1/KeyEnc Cryptographic Operation (Key Encryption)

2.1.3.4.1. TSS

The evaluator shall examine the TSS to ensure that it identifies whether the implementation of this
cryptographic operation for key encryption (including key lengths and modes) is an
implementation that is tested in FCS_COP.1/SKC.

The evaluator shall check that the TSS includes a description of the key wrap functions and shall
check that this uses a key wrap algorithm and key sizes according to the specification selected in
the ST out of the table as provided in the [DSC cPP] table.

2.1.3.4.2. AGD

The evaluator checks the AGD documents to confirm that the instructions for establishing the
evaluated configuration use only those key wrap functions selected in the ST. If multiple key access
modes are supported, the evaluator shall examine the guidance documentation to determine that
the method of choosing a specific mode/key size by the end user is described.

2.1.3.4.3. Test

Refer to FCS_COP.1/SKC for the required testing for each symmetric key wrapping method selected
from the table and to FCS_COP.1/KAT for the required testing for each asymmetric key wrapping
method selected from the table. Each distinct implementation shall be tested separately.

If the implementation of the key encryption operation is the same implementation tested under
FCS_COP.1/SKC or FCS_COP.1/KAT, and it has been tested with the same key lengths and modes, then
no further testing is required. If key encryption uses a different implementation, (where "different
implementation" includes the use of different key lengths or modes), then the evaluator shall
additionally test the key encryption implementation using the corresponding tests specified for
FCS_COP.1/SKC or FCS_COP.1/KAT.

2.1.3.4.4. KMD

The evaluator shall examine the KMD to ensure that it describes when the key wrapping occurs,
that the KMD description is consistent with the description in the TSS, and that for all keys that are

25

wrapped the TOE uses a method as described in the [DSC cPP] table. No uncertainty should be left
over which is the wrapping key and the key to be wrapped and where the wrapping key potentially
comes from i.e. is derived from.

If "AES-GCM" or "AES-CCM" is used the evaluator shall examine the KMD to ensure that it describes
how the IV is generated and that the same IV is never reused to encrypt different plaintext pairs
under the same key. Moreover in the case of GCM, he must ensure that, at each invocation of GCM,
the length of the plaintext is at most (2^32)-2 blocks.

2.1.3.5. FCS_COP.1/SigGen Cryptographic Operation (Signature Generation)

2.1.3.5.1. TSS

The evaluator shall examine the TSS to ensure that all signature generation functions use the
approved algorithms and key sizes.

2.1.3.5.2. AGD

There are no AGD evaluation activities for this component.

2.1.3.5.3. Test

The following tests require the developer to provide access to a test platform that provides the
evaluator with tools that are typically not found on factory products.

Each section below contains tests the evaluators must perform for each selected digital signature
scheme. Based on the assignments and selections in the requirement, the evaluators choose the
specific activities that correspond to those selections.

The following tests require the developer to provide access to a test platform that provides the
evaluator with tools that are not found on the TOE in its evaluated configuration.

If SigGen1: RSASSA-PKCS1-v1_5 or SigGen4: RSASSA-PSS is claimed:

The below test is derived from The 186-4 RSA Validation System (RSA2VS). Updated 8 July 2014,
Section 6.3, from the National Institute of Standards and Technology.

To test the implementation of RSA signature generation the evaluator uses the system under test to
generate signatures for 10 messages for each combination of modulus size and SHA algorithm. The
evaluator then uses a known-good implementation and the associated public keys to verify the
signatures.

If SigGen2: Digital Signature Scheme 2 (DSS2) or SigGen3: Digital Signature Scheme 3 (DSS3):

To test the implementation of DSS2/3 signature generation the evaluator uses the system under test
to generate signatures for 10 messages for each combination of SHA algorithm, hash size and key
size. The evaluator them uses a known-good implementation and the associated public keys to
verify the signatures.

If SigGen5: ECDSA is claimed:

26

The below test is derived from The FIPS 186-4 Elliptic Curve Digital Signature Algorithm Validation
System (ECDSA2VS). Updated 18 March 2014, Section 6.4, from the National Institute of Standards
and Technology.

To test the implementation of ECDSA signature generation the evaluator uses the system under test
to generate signatures for 10 messages for each combination of curve, SHA algorithm, hash size,
and key size. The evaluator then uses a known-good implementation and the associated public keys
to verify the signatures.

2.1.3.5.4. KMD

There are no KMD evaluation activities for this component.

2.1.3.6. FCS_COP.1/SigVer Cryptographic Operation (Signature Verification)

2.1.3.6.1. TSS

The evaluator shall check the TSS to ensure that it describes the overall flow of the signature
verification. This should at least include identification of the format and general location (e.g.,
"firmware on the hard drive device" rather than "memory location 0x00007A4B") of the data to be
used in verifying the digital signature; how the data received from the operational environment are
brought onto the device; and any processing that is performed that is not part of the digital
signature algorithm (for instance, checking of certificate revocation lists).

2.1.3.6.2. AGD

There are no AGD evaluation activities for this component.

2.1.3.6.3. Test

The following tests require the developer to provide access to a test platform that provides the
evaluator with tools that are typically not found on factory products.

Each section below contains tests the evaluators must perform for each selected digital signature
scheme. Based on the assignments and selections in the requirement, the evaluators choose the
specific activities that correspond to those selections.

The following tests require the developer to provide access to a test platform that provides the
evaluator with tools that are not found on the TOE in its evaluated configuration.

SigVer1: RSASSA-PKCS1-v1_5 and SigVer4: RSASSA-PSS

These tests are derived from The 186-4 RSA Validation System (RSA2VS), updated 8 Jul 2014, Section
6.4.

The FIPS 186-4 RSA Signature Verification Test tests the ability of the TSF to recognize valid and
invalid signatures. The evaluator shall provide a modulus and three associated key pairs (d, e) for
each combination of selected SHA algorithm, modulus size and hash size. Each private key d is used
to sign six pseudorandom messages each of 1024 bits. For five of the six messages, the public key
(e), message, IR format, padding, or signature is altered so that signature verification should fail.
The test passes only if all the signatures made using unaltered parameters result in successful

27

signature verification, and all the signatures made using altered parameters result in unsuccessful
signature verification.

SigVer5: ECDSA on NIST and Brainpool Curves

These tests are derived from The FIPS 186-4 Elliptic Curve Digital Signature Algorithm Validation
System (ECDSA2VS), updated 18 Mar 2014, Section 6.5.

The FIPS 186-4 ECC Signature Verification Test tests the ability of the TSF to recognize valid and
invalid signatures. The evaluator shall provide a modulus and associated key pair (x, y) for each
combination of selected curve, SHA algorithm, modulus size, and hash size. Each private key (x) is
used to sign 15 pseudorandom messages of 1024 bits. For eight of the fifteen messages, the message,
IR format, padding, or signature is altered so that signature verification should fail. The test passes
only if all the signatures made using unaltered parameters result in successful signature
verification, and all the signatures made using altered parameters result in unsuccessful signature
verification.

SigVer2: Digital Signature Scheme 2

The following or equivalent steps shall be taken to test the TSF.

For each supported modulus size, underlying hash algorithm, and length of the trailer field (1- or 2-
byte), the evaluator shall generate NT sets of recoverable message (M1), non-recoverable message
(M2), salt, public key and signature (Σ).

1. NT shall be greater than or equal to 20.

2. The length of salts shall be selected from its supported length range of salt. The typical length of
salt is equal to the output block length of underlying hash algorithm (see 9.2.2 of ISO/IEC 9796-
2:2010).

3. The length of recoverable messages should be selected by considering modulus size, output
block length of underlying hash algorithm, and length of salt (LS). As described in Annex D of
ISO/IEC 9796-2:2010, it is desirable to maximise the length of recoverable message. As Table 3
shows the maximum bit-length of recoverable message that is divisible by 512, for some
combinations of modulus size, underlying hash algorithm, and length of salt.

Table 3. Maximum length of recoverable message divisible by 512

Maximum length of recoverable
message divisible by 512 (bits)

Modulus
size (bits)

Underlying hash
algorithm (bits)

Length of
salt LS (bits)

1536

2048

SHA-256
128

1024 256

1024

SHA-512

128

1024 256

512 512

28

Maximum length of recoverable
message divisible by 512 (bits)

Modulus
size (bits)

Underlying hash
algorithm (bits)

Length of
salt LS (bits)

2560

3072

SHA-256
128

2048 256

2048

SHA-512

128

2048 256

1536 512

None that 2-byte trailer field is assumed in calculating the maximum length of recoverable
message

4. The length of non-recoverable messages should be selected by considering the underlying hash
algorithm and usages. If the TSF is used for verifying the authenticity of software/firmware
updates, the length of non-recoverable messages should be selected greater than or equal to
2048-bit. With this length range, it means that the underlying hash algorithm is also tested for
two or more input blocks.

5. The evaluator shall select approximately one half of NT sets and shall alter one of the values
(non-recoverable message, public key exponent or signature) in the sets. In altering public key
exponent, the evaluator shall alter the public key exponent while keeping the exponent odd. In
altering signatures, the following ways should be considered:

i. Altering a signature just by replacing a bit in the bit-string representation of the signature

ii. Altering a signature so that the trailer in the message representative cannot be interpreted.
This can be achieved by following ways:

▪ Setting the rightmost four bits of the message representative to the values other than
'1100'.

▪ In the case when 1-byte trailer is used, setting the rightmost byte of the message
representative to the values other than '0xbc', while keeping the rightmost four bits to
'1100'.

▪ In the case when 2-byte trailer is used, setting the rightmost byte of the message
representative to the values other than '0xcc', while keeping the rightmost four bits to
'1100'.

iii. In the case when 2-byte trailer is used, altering a signature so that the hash algorithm
identifier in the trailer (i.e. the left most byte of the trailer) does not correspond to hash
algorithms identified in the SFR. The hash algorithm identifiers are 0x34 for SHA-256 (see
Clause 10 of ISO/IEC 10118-3:2018), and 0x35 for SHA-512 (see Clause 11 of ISO/IEC 10118-
3:2018).

iv. Let LS be the length of salt, altering a signature so that the intermediate bit string D in the
message representative is set to all zeroes except for the rightmost LS bits of D.

v. (non-conformant signature length) Altering a signature so that the length of signature Σ is
changed to modulus size and the most significant bit of signature Σ is set equal to '1'.

vi. (non-conformant signature) Altering a signature so that the integer converted from
signature Σ is greater than modulus n.

29

The evaluator shall supply the NT sets to the TSF and obtain in response a set of NT Verification-
Success or Verification-Fail values. When the Verification-Success is obtained, the evaluator shall
also obtain recovered message (M 1*).

The evaluator shall verify that Verification-Success results correspond to the unaltered sets and
Verification-Fail results correspond to the altered sets.

For each recovered message, the evaluator shall compare the recovered message (M1*) with the
corresponding recoverable message (M 1) in the unaltered sets.

The test passes only if all the signatures made using unaltered sets result in Verification-Success,
each recovered message (M 1*) is equal to corresponding M 1 in the unaltered sets, and all the
signatures made using altered sets result in Verification-Fail.

SigVer3: Digital Signature Scheme 3

The evaluator shall perform the test described in SigVer2: Digital Signature Scheme 2 while using a
fixed salt for NT sets.

2.1.3.6.4. KMD

There are no KMD evaluation activities for this component.

2.1.3.7. FCS_COP.1/SKC Cryptographic Operation (Symmetric Key Cryptography)

2.1.3.7.1. TSS

The evaluator shall check that the TSS includes a description of encryption functions used for
symmetric key encryption. The evaluator should check that this description of the selected
encryption function includes the key sizes and modes of operations as specified in the [DSC cPP]
"Table 9. Supported Methods for Symmetric Key Cryptography Operation."

The evaluator shall check that the TSS describes the means by which the TOE satisfies constraints
on algorithm parameters included in the selections made for 'cryptographic algorithm' and 'list of
standards'.

2.1.3.7.2. AGD

If the product supports multiple modes, the evaluator shall examine the vendor’s documentation to
determine that the method of choosing a specific mode/key size by the end user is described.

2.1.3.7.3. Test

The following tests require the developer to provide access to a test platform that provides the
evaluator with tools that are typically not found on factory products.

The following tests are conditional based upon the selections made in the SFR. The evaluator shall
perform the following test or witness respective tests executed by the developer. The tests must be
executed on a platform that is as close as practically possible to the operational platform (but which
may be instrumented in terms of, for example, use of a debug mode). Where the test is not carried
out on the TOE itself, the test platform shall be identified and the differences between test

30

environment and TOE execution environment shall be described.

Preconditions for testing:

• Specification of keys as input parameter to the function to be tested

• Specification of required input parameters such as modes

• Specification of user data (plaintext)

• Tapping of encrypted user data (ciphertext) directly in the non-volatile memory

AES-CBC:

For the AES-CBC tests described below, the plaintext, ciphertext, and IV values shall consist of 128-
bit blocks. To determine correctness, the evaluator shall compare the resulting values to those
obtained by submitting the same inputs to a known-good implementation.

These tests are intended to be equivalent to those described in NIST’s AES Algorithm Validation
Suite (AESAVS) (http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf). It is not
recommended that evaluators use values obtained from static sources such as the example NIST’s
AES Known Answer Test Values from the AESAVS document, or use values not generated expressly
to exercise the AES-CBC implementation.

AES-CBC Known Answer Tests

KAT-1 (GFSBox): To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of five
different plaintext values for each selected key size and obtain the ciphertext value that results
from AES-CBC encryption of the given plaintext using a key value of all zeros and an IV of all zeros.

To test the decrypt functionality of AES-CBC, the evaluator shall supply a set of five different
ciphertext values for each selected key size and obtain the plaintext value that results from AES-
CBC decryption of the given ciphertext using a key value of all zeros and an IV of all zeros.

KAT-2 (KeySBox): To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of
five different key values for each selected key size and obtain the ciphertext value that results from
AES-CBC encryption of an all-zeros plaintext using the given key value and an IV of all zeros.

To test the decrypt functionality of AES-CBC, the evaluator shall supply a set of five different key
values for each selected key size and obtain the plaintext that results from AES-CBC decryption of
an all-zeros ciphertext using the given key and an IV of all zeros.

KAT-3 (Variable Key): To test the encrypt functionality of AES-CBC, the evaluator shall supply a set
of keys for each selected key size (as described below) and obtain the ciphertext value that results
from AES encryption of an all-zeros plaintext using each key and an IV of all zeros.

Key i in each set shall have the leftmost i bits set to ones and the remaining bits to zeros, for values
of i from 1 to the key size. The keys and corresponding ciphertext are listed in AESAVS, Appendix E.

To test the decrypt functionality of AES-CBC, the evaluator shall use the same keys as above to
decrypt the ciphertext results from above. Each decryption should result in an all-zeros plaintext.

KAT-4 (Variable Text): To test the encrypt functionality of AES-CBC, for each selected key size, the

31

http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf

evaluator shall supply a set of 128-bit plaintext values (as described below) and obtain the
ciphertext values that result from AES-CBC encryption of each plaintext value using a key of each
size and IV consisting of all zeros.

Plaintext value i shall have the leftmost i bits set to ones and the remaining bits set to zeros, for
values of i from 1 to 128. The plaintext values are listed in AESAVS, Appendix D.

To test the decrypt functionality of AES-CBC, for each selected key size, use the plaintext values
from above as ciphertext input, and AES-CBC decrypt each ciphertext value using key of each size
consisting of all zeros and an IV of all zeros.

AES-CBC Multi-Block Message Test

The evaluator shall test the encrypt functionality by encrypting nine i-block messages for each
selected key size, for 2 ≤ i ≤ 10. For each test, the evaluator shall supply a key, an IV, and a plaintext
message of length i blocks, and encrypt the message using AES-CBC. The resulting ciphertext values
shall be compared to the results of encrypting the plaintext messages using a known good
implementation.

The evaluator shall test the decrypt functionality by decrypting nine i-block messages for each
selected key size, for 2 ≤ i ≤ 10. For each test, the evaluator shall supply a key, an IV, and a ciphertext
message of length i blocks, and decrypt the message using AES-CBC. The resulting plaintext values
shall be compared to the results of decrypting the ciphertext messages using a known good
implementation.

AES-CBC Monte Carlo Tests

The evaluator shall test the encrypt functionality for each selected key size using 100 3-tuples of
pseudo-random values for plaintext, IVs, and keys.

The evaluator shall supply a single 3-tuple of pseudo-random values for each selected key size. This
3-tuple of plaintext, IV, and key is provided as input to the below algorithm to generate the
remaining 99 3-tuples, and to run each 3-tuple through 1000 iterations of AES-CBC encryption.

Input: PT, IV, Key
Key[0] = Key
IV[0] = IV
PT[0] = PT
for i = 0 to 99 {
 Output Key[i], IV[i], PT[0]
 for j = 0 to 999 {
 if (j == 0) {
 CT[j] = AES-CBC-Encrypt(Key[i], IV[i], PT[j])
 PT[j+1] = IV[i]
 } else {
 CT[j] = AES-CBC-Encrypt(Key[i], PT[j])
 PT[j+1] = CT[j-1]
 }
 }
 Output CT[j]

32

 If (KeySize == 128) Key[i+1] = Key[i] xor CT[j]
 If (KeySize == 192) Key[i+1] = Key[i] xor (last 64 bits of CT[j-1] ||CT[j])
 If (KeySize == 256) Key[i+1] = Key[i] xor ((CT[j-1] |CT[j])
 IV[i+1] = CT[j]
 PT[0] = CT[j-1]
}

The ciphertext computed in the 1000th iteration (CT[999]) is the result for each of the 100 3-tuples
for each selected key size. This result shall be compared to the result of running 1000 iterations
with the same values using a known good implementation.

The evaluator shall test the decrypt functionality using the same test as above, exchanging CT and
PT, and replacing AES-CBC-Encrypt with AES-CBC-Decrypt.

AES-CCM:

These tests are intended to be equivalent to those described in the NIST document, "The CCM
Validation System (CCMVS)," updated 9 Jan 2012, found at
http://csrc.nist.gov/groups/STM/cavp/documents/mac/CCMVS.pdf.

It is not recommended that evaluators use values obtained from static sources such as
http://csrc.nist.gov/groups/STM/cavp/documents/mac/ccmtestvectors.zip or use values not generated
expressly to exercise the AES-CCM implementation.

The evaluator shall test the generation-encryption and decryption-verification functionality of AES-
CCM for the following input parameter and tag lengths:

• Keys: All supported and selected key sizes (e.g., 128, 192, or 256 bits).

• Associated Data: Two or three values for associated data length: The minimum (≥ 0 bytes) and
maximum (≤ 32 bytes) supported associated data lengths, and 2^16 (65536) bytes, if supported.

• Payload: Two values for payload length: The minimum (≥ 0 bytes) and maximum (≤ 32 bytes)
supported payload lengths.

• Nonces: All supported nonce lengths (e.g., 8, 9, 10, 11, 12, 13) in bytes.

• Tag: All supported tag lengths (e.g., 4, 6, 8, 10, 12, 14, 16) in bytes.

The testing for CCM consists of five tests. To determine correctness in each of the below tests, the
evaluator shall compare the ciphertext with the result of encryption of the same inputs with a
known good implementation.

Variable Associated Data Test: For each supported key size and associated data length, and any
supported payload length, nonce length, and tag length, the evaluator shall supply one key value,
one nonce value, and 10 pairs of associated data and payload values, and obtain the resulting
ciphertext.

Variable Payload Text: For each supported key size and payload length, and any supported
associated data length, nonce length, and tag length, the evaluator shall supply one key value, one
nonce value, and 10 pairs of associated data and payload values, and obtain the resulting
ciphertext.

33

http://csrc.nist.gov/groups/STM/cavp/documents/mac/CCMVS.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/mac/ccmtestvectors.zip

Variable Nonce Test: For each supported key size and nonce length, and any supported associated
data length, payload length, and tag length, the evaluator shall supply one key value, one nonce
value, and 10 pairs of associated data and payload values, and obtain the resulting ciphertext.

Variable Tag Test: For each supported key size and tag length, and any supported associated data
length, payload length, and nonce length, the evaluator shall supply one key value, one nonce
value, and 10 pairs of associated data and payload values, and obtain the resulting ciphertext.

Decryption-Verification Process Test: To test the decryption-verification functionality of AES-CCM,
for each combination of supported associated data length, payload length, nonce length, and tag
length, the evaluator shall supply a key value and 15 sets of input plus ciphertext, and obtain the
decrypted payload. Ten of the 15 input sets supplied should fail verification and five should pass.

AES-GCM:

These tests are intended to be equivalent to those described in the NIST document, "The
Galois/Counter Mode (GCM) and GMAC Validation System (GCMVS) with the Addition of XPN
Validation Testing," rev. 15 Jun 2016, section 6.2, found at
http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmvs.pdf.

It is not recommended that evaluators use values obtained from static sources such as
http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmtestvectors.zip, or use values not
generated expressly to exercise the AES-GCM implementation.

The evaluator shall test the authenticated encryption functionality of AES-GCM by supplying 15 sets
of Key, Plaintext, AAD, IV, and Tag data for every combination of the following parameters as
selected in the ST and supported by the implementation under test:

• Key size in bits: Each selected and supported key size (e.g., 128, 192, or 256 bits).

• Plaintext length in bits: Up to four values for plaintext length: Two values that are non-zero
integer multiples of 128, if supported. And two values that are non-multiples of 128, if
supported.

• AAD length in bits: Up to five values for AAD length: Zero-length, if supported. Two values that
are non-zero integer multiples of 128, if supported. And two values that are integer non-
multiples of 128, if supported.

• IV length in bits: Up to three values for IV length: 96 bits. Minimum and maximum supported
lengths, if different.

• MAC length in bits: Each supported length (e.g., 128, 120, 112, 104, 96).

To determine correctness, the evaluator shall compare the resulting values to those obtained by
submitting the same inputs to a known-good implementation.

The evaluator shall test the authenticated decrypt functionality of AES-GCM by supplying 15
Ciphertext-Tag pairs for every combination of the above parameters, replacing Plaintext length
with Ciphertext length. For each parameter combination the evaluator shall introduce an error into
either the Ciphertext or the Tag such that approximately half of the cases are correct and half the
cases contain errors. To determine correctness, the evaluator shall compare the resulting pass/fail
status and Plaintext values to the results obtained by submitting the same inputs to a known-good

34

http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmvs.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmtestvectors.zip

implementation.

AES-CTR:

For the AES-CTR tests described below, the plaintext and ciphertext values shall consist of 128-bit
blocks. To determine correctness, the evaluator shall compare the resulting values to those
obtained by submitting the same inputs to a known-good implementation.

These tests are intended to be equivalent to those described in NIST’s AES Algorithm Validation
Suite (AESAVS) (http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf). It is not
recommended that evaluators use values obtained from static sources such as the example NIST’s
AES Known Answer Test Values from the AESAVS document, or use values not generated expressly
to exercise the AES-CTR implementation.

AES-CTR Known Answer Tests

KAT-1 (GFSBox): To test the encrypt functionality of AES-CTR, the evaluator shall supply a set of five
different plaintext values for each selected key size and obtain the ciphertext value that results
from AES-CTR encryption of the given plaintext using a key value of all zeros.

To test the decrypt functionality of AES-CTR, the evaluator shall supply a set of five different
ciphertext values for each selected key size and obtain the plaintext value that results from AES-
CTR decryption of the given ciphertext using a key value of all zeros.

KAT-2 (KeySBox): To test the encrypt functionality of AES-CTR, the evaluator shall supply a set of
five different key values for each selected key size and obtain the ciphertext value that results from
AES-CTR encryption of an all-zeros plaintext using the given key value.

To test the decrypt functionality of AES-CTR, the evaluator shall supply a set of five different key
values for each selected key size and obtain the plaintext that results from AES-CTR decryption of
an all-zeros ciphertext using the given key.

KAT-3 (Variable Key): To test the encrypt functionality of AES-CTR, the evaluator shall supply a set
of keys for each selected key size (as described below) and obtain the ciphertext value that results
from AES encryption of an all-zeros plaintext using each key.

Key i in each set shall have the leftmost i bits set to ones and the remaining bits to zeros, for values
of i from 1 to the key size. The keys and corresponding ciphertext are listed in AESAVS, Appendix E.

To test the decrypt functionality of AES-CTR, the evaluator shall use the same keys as above to
decrypt the ciphertext results from above. Each decryption should result in an all-zeros plaintext.

KAT-4 (Variable Text): To test the encrypt functionality of AES-CTR, for each selected key size, the
evaluator shall supply a set of 128-bit plaintext values (as described below) and obtain the
ciphertext values that result from AES-CTR encryption of each plaintext value using a key of each
size.

Plaintext value i shall have the leftmost i bits set to ones and the remaining bits set to zeros, for
values of i from 1 to 128. The plaintext values are listed in AESAVS, Appendix D.

To test the decrypt functionality of AES-CTR, for each selected key size, use the plaintext values

35

http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf

from above as ciphertext input, and AES-CTR decrypt each ciphertext value using key of each size
consisting of all zeros.

AES-CTR Multi-Block Message Test

The evaluator shall test the encrypt functionality by encrypting nine i-block messages for each
selected key size, for 2 ≤ i ≤ 10. For each test, the evaluator shall supply a key and a plaintext
message of length i blocks, and encrypt the message using AES-CTR. The resulting ciphertext values
shall be compared to the results of encrypting the plaintext messages using a known good
implementation.

The evaluator shall test the decrypt functionality by decrypting nine i-block messages for each
selected key size, for 2 ≤ i ≤ 10. For each test, the evaluator shall supply a key and a ciphertext
message of length i blocks, and decrypt the message using AES-CTR. The resulting plaintext values
shall be compared to the results of decrypting the ciphertext messages using a known good
implementation.

AES-CTR Monte Carlo Tests

The evaluator shall test the encrypt functionality for each selected key size using 100 2-tuples of
pseudo-random values for plaintext and keys.

The evaluator shall supply a single 2-tuple of pseudo-random values for each selected key size. This
2-tuple of plaintext and key is provided as input to the below algorithm to generate the remaining
99 2-tuples, and to run each 2-tuple through 1000 iterations of AES-CTR encryption.

Input: PT, Key
Key[0] = Key
PT[0] = PT
for i = 0 to 99 {
 Output Key[i], PT[0]
 for j = 0 to 999 {
 CT[j] = AES-CTR-Encrypt(Key[i], PT[j])
 PT[j+1] = CT[j]
 }
 Output CT[j]
 If (KeySize == 128) Key[i+1] = Key[i] xor CT[j]
 If (KeySize == 192) Key[i+1] = Key[i] xor (last 64 bits of CT[j-1] ||CT[j])
 If (KeySize == 256) Key[i+1] = Key[i] xor ((CT[j-1] |CT[j])
 PT[0] = CT[j]
}

The ciphertext computed in the 1000th iteration (CT[999]) is the result for each of the 100 2-tuples
for each selected key size. This result shall be compared to the result of running 1000 iterations
with the same values using a known good implementation.

The evaluator shall test the decrypt functionality using the same test as above, exchanging CT and
PT, and replacing AES-CTR-Encrypt with AES-CTR-Decrypt.

Note additional design considerations for this mode are addressed in the KMD requirements.

36

XTS-AES:

These tests are intended to be equivalent to those described in the NIST document, "The XTS-AES
Validation System (XTSVS)," updated 5 Sept 2013, found at
http://csrc.nist.gov/groups/STM/cavp/documents/aes/XTSVS.pdf

It is not recommended that evaluators use values obtained from static sources such as the XTS-AES
test vectors at http://csrc.nist.gov/groups/STM/cavp/documents/aes/XTSTestVectors.zip or use values
not generated expressly to exercise the XTS-AES implementation.

The evaluator shall generate test values as follows:

For each supported key size (256 bit (for AES-128) and 512 bit (for AES-256) keys), the evaluator
shall provide up to five data lengths:

• Two data lengths divisible by the 128-bit block size, If data unit lengths of complete block sizes
are supported.

• Two data lengths not divisible by the 128-bit block size, if data unit lengths of partial block sizes
are supported.

• The largest data length supported by the implementation, or 2^16 (65536), whichever is larger.

The evaluator shall specify whether the implementation supports tweak values of 128-bit
hexadecimal strings or a data unit sequence numbers, or both.

For each combination of key size and data length, the evaluator shall provide 100 sets of input data
and obtain the ciphertext that results from XTS-AES encryption. If both kinds of tweak values are
supported then each type of tweak value shall be used in half of every 100 sets of input data, for all
combinations of key size and data length. The evaluator shall verify that the resulting ciphertext
matches the results from submitting the same inputs to a known-good implementation of XTS-AES.

The evaluator shall test the decrypt functionality of XTS-AES using the same test as for encrypt,
replacing plaintext values with ciphertext values and XTS-AES encrypt with XTS- AES decrypt.

The evaluator shall check that the full length keys are created by methods that ensure that the two
halves are different and independent.

AES-KWP:

The tests below are derived from "The Key Wrap Validation System (KWVS), Updated: June 20,
2014" from the National Institute of Standards and Technology.

The evaluator shall test the authenticated-encryption functionality of AES-KWP (KWP-AE) using the
same test as for AES-KW authenticated-encryption with the following change in the five plaintext
lengths:

• Four lengths that are multiples of 8 bits

• The largest supported length less than or equal to 4096 bits.

The evaluator shall test the authenticated-decryption (KWP-AD) functionality of AES-KWP using the
same test as for AES-KWP authenticated-encryption, replacing plaintext values with ciphertext

37

http://csrc.nist.gov/groups/STM/cavp/documents/aes/XTSVS.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/aes/XTSTestVectors.zip

values and AES-KWP authenticated-encryption with AES-KWP authenticated-decryption. For the
Authenticated Decryption test, 20 out of the 100 trials per plaintext length have ciphertext values
that fail authentication.

Additionally, the evaluator shall perform the following negative tests:

Test 1: (invalid plaintext length):

Determine the valid plaintext lengths of the implementation from the TOE specification. Verify that
the implementation of KWP-AE in the TOE rejects plaintexts of invalid length by testing plaintext of
the following lengths: 1) plaintext with length greater than 64 semi-blocks, 2) plaintext with bit-
length not divisible by 8, and 3) plaintext with length 0.

Test 2: (invalid ciphertext length):

Determine the valid ciphertext lengths of the implementation from the TOE specification. Verify
that the implementation of KWP-AD in the TOE rejects ciphertexts of invalid length by testing
ciphertext of the following lengths: 1) ciphertext with length greater than 65 semi-blocks, 2)
ciphertext with bit-length not divisible by 64, 3) ciphertext with length 0, and 4) ciphertext with
length of one semi-block.

Test 3: (invalid ICV2):

Test that the implementation detects invalid ICV2 values by encrypting any plaintext value four
times using a different value for ICV2 each time as follows: Start with a base ICV2 of 0xA65959A6.
For each of the four tests change a different byte of ICV2 to a different value, so that each of the
four bytes is changed once. Verify that the implementation of KWP-AD in the TOE outputs FAIL for
each test.

Test 4: (invalid padding length):

Generate one ciphertext using algorithm KWP-AE with substring 32 of S replaced by each of the
following 32-bit values, where len(P) is the length of P in bits and []32 denotes the representation of
an integer in 32 bits:

• [0]32

• [len(P)/8-8]32

• [len(P)/8+8]32

• [513]32.

Verify that the implementation of KWP-AD in the TOE outputs FAIL on those inputs.

Test 5: (invalid padding bits):

If the implementation supports plaintext of length not a multiple of 64-bits, then

• for each PAD length [1..7]

◦ for each byte in PAD set a zero PAD value;

▪ replace current byte by a non-zero value and use the resulting plaintext as input to

38

algorithm KWP-AE to generate ciphertexts;

▪ verify that the implementation of KWP-AD in the TOE outputs FAIL on this input.

AES-KW:

The tests below are derived from "The Key Wrap Validation System (KWVS), Updated: June 20,
2014" from the National Institute of Standards and Technology.

The evaluator shall test the authenticated-encryption functionality of AES-KW for each combination
of the following input parameters:

• Supported key lengths selected in the ST (e.g. 128 bits, 256 bits)

• Five plaintext lengths:

◦ Two lengths that are non-zero multiples of 128 bits (two semi-block lengths)

◦ Two lengths that are odd multiples of the semi-block length (64 bits)

◦ The largest supported plaintext length less than or equal to 4096 bits.

For each set of the above parameters the evaluator shall generate a set of 100 key and plaintext
pairs and obtain the ciphertext that results from AES-KW authenticated encryption. To determine
correctness, the evaluator shall compare the results with those obtained from the AES-KW
authenticated-encryption function of a known good implementation.

The evaluator shall test the authenticated-decryption functionality of AES-KW using the same test
as for authenticated-encryption, replacing plaintext values with ciphertext values and AES-KW
authenticated-encryption (KW-AE) with AES-KW authenticated-decryption (KW-AD). For the
authenticated-decryption test, 20 out of the 100 trials per plaintext length must have ciphertext
values that are not authentic; that is, they fail authentication.

Additionally, the evaluator shall perform the following negative tests:

Test 1 (invalid plaintext length):

Determine the valid plaintext lengths of the implementation from the TOE specification. Verify that
the implementation of KW-AE in the TOE rejects plaintexts of invalid length by testing plaintext of
the following lengths: 1) plaintext length greater than 64 semi-blocks, 2) plaintext bit-length not
divisible by 64, 3) plaintext with length 0, and 4) plaintext with one semi-block.

Test 2 (invalid ciphertext length):

Determine the valid ciphertext lengths of the implementation from the TOE specification. Verify
that the implementation of KW-AD in the TOE rejects ciphertexts of invalid length by testing
ciphertext of the following lengths: 1) ciphertext with length greater than 65 semi-blocks, 2)
ciphertext with bit-length not divisible by 64, 3) ciphertext with length 0, 4) ciphertext with length
of one semi-block, and 5) ciphertext with length of two semi-blocks.

Test 3 (invalid ICV1):

Test that the implementation detects invalid ICV1 values by encrypting any plaintext value eight
times using a different value for ICV1 each time as follows: Start with a base ICV1 of

39

0xA6A6A6A6A6A6A6A6. For each of the eight tests change a different byte to a different value, so
that each of the eight bytes is changed once. Verify that the implementation of KW-AD in the TOE
outputs FAIL for each test.

CAM-CBC:

To test the encrypt and decrypt functionality of Camellia in CBC mode, the evaluator shall perform
the tests as specified in 10.2.1.2 of ISO/IEC 18367:2016.

CAM-CCM:

To test the encrypt functionality of Camellia in CCM mode, the evaluator shall perform the tests as
specified in 10.6.1.1 of ISO/IEC 18367:2016.

To test the decrypt functionality of Camellia in CCM mode, the evaluator shall perform the tests as
specified in 10.6.1.2 of ISO/IEC 18367:2016.

As a prerequisite for these tests, the evaluator shall perform the test for encrypt functionality of
Camellia in ECB mode as specified in 10.2.1.2 of ISO/IEC 18367:2016.

CAM-GCM:

To test the encrypt functionality of Camellia in GCM, the evaluator shall perform the tests as
specified in 10.6.1.1 of ISO/IEC 18367:2016.

To test the decrypt functionality of Camellia in GCM, the evaluator shall perform the tests as
specified in 10.6.1.2 of ISO/IEC 18367:2016.

As a prerequisite for these tests, the evaluator shall perform the test for encrypt functionality of
Camellia in ECB mode as specified in 10.2.1.2 of ISO/IEC 18367:2016.

XTS-CAM:

These tests are intended to be equivalent to those described in the IPA document, ATR-01-B,
"Specifications of Cryptographic Algorithm Implementation Testing — Symmetric-Key
Cryptography", found at
https://www.ipa.go.jp/security/jcmvp/jcmvp_e/documents/atr/atr01b_en.pdf.

The evaluator shall generate test values as follows:

For each supported key size (256 bit (for Camellia-128) and 512 bit (for Camellia-256) keys), the
evaluator shall provide up to five data lengths:

• Two data lengths divisible by the 128-bit block size, If data unit lengths of complete block sizes
are supported.

• Two data lengths not divisible by the 128-bit block size, if data unit lengths of partial block sizes
are supported.

• The largest data length supported by the implementation, or 2^16 (65536), whichever is larger.

The evaluator shall specify whether the implementation supports tweak values of 128-bit
hexadecimal strings or a data unit sequence numbers, or both.

40

https://www.ipa.go.jp/security/jcmvp/jcmvp_e/documents/atr/atr01b_en.pdf

For each combination of key size and data length, the evaluator shall provide 100 sets of input data
and obtain the ciphertext that results from XTS-Camellia encryption. If both kinds of tweak values
are supported, 50 of each 100 sets of input data shall use each type of tweak value. The resulting
ciphertext shall be compared to the results of a known-good implementation.

As a prerequisite for this test, the evaluator shall perform the test for encrypt functionality of
Camellia in ECB mode as specified in 10.2.1.2 of ISO/IEC 18367:2016.

The evaluator shall test the decrypt functionality of XTS-Camellia using the same test as for encrypt,
replacing plaintext values with ciphertext values and XTS-Camellia encrypt with XTS- Camellia
decrypt.

As a prerequisite for this test, the evaluator shall perform the test for decrypt functionality of
Camellia in ECB mode as specified in 10.2.1.2 of ISO/IEC 18367:2016.

2.1.3.7.4. KMD

The evaluator shall examine the KMD to ensure that the points at which symmetric key encryption
and decryption occurs are described, and that the complete data path for symmetric key encryption
is described. The evaluator checks that this description is consistent with the relevant parts of the
TSS.

Assessment of the complete data path for symmetric key encryption includes confirming that the
KMD describes the data flow from the device’s host interface to the device’s non-volatile memory
storing the data, and gives information enabling the user data datapath to be distinguished from
those situations in which data bypasses the data encryption engine (e.g. read-write operations to an
unencrypted Master Boot Record area). The evaluator shall ensure that the documentation of the
data path is detailed enough that it thoroughly describes the parts of the TOE that the data passes
through (e.g. different memory types, processors and co-processors), its encryption state (i.e.
encrypted or unencrypted) in each part, and any places where the data is stored. For example, any
caching or buffering of the data should be identified and distinguished from the final destination in
non-volatile memory (the latter represents the location from which the host will expect to retrieve
the data in future).

If support for AES-CTR is claimed and the counter value source is internal to the TOE, the evaluator
shall verify that the KMD describes the internal counter mechanism used to ensure that it provides
unique counter block values.

2.1.4. Random Bit Generation (Extended - FCS_RBG_EXT)

2.1.4.1. FCS_RBG_EXT.1 Random Bit Generation

In addition to the materials below, documentation shall be produced—and the evaluator shall
perform the activities—in accordance with Appendix D of [DSC cPP].

2.1.4.1.1. TSS

The evaluator shall examine the TSS to determine that it specifies the DRBG type, identifies the
entropy sources seeding the DRBG, and state the assumed or calculated min-entropy supplied either
separately by each source or the min-entropy contained in the combined seed value.

41

2.1.4.1.2. AGD

There are no AGD evaluation activities for this component.

2.1.4.1.3. Test

The following tests require the developer to provide access to a test platform that provides the
evaluator with tools that are typically not found on factory products.

The evaluator shall perform 15 trials for the RNG implementation. If the RNG is configurable, the
evaluator shall perform 15 trials for each configuration.

If the RNG has prediction resistance enabled, each trial consists of (1) instantiate DRBG, (2) generate
the first block of random bits (3) generate a second block of random bits (4) uninstantiate. The
evaluator verifies that the second block of random bits is the expected value. The evaluator shall
generate eight input values for each trial. The first is a count (0 - 14). The next three are entropy
input, nonce, and personalization string for the instantiate operation. The next two are additional
input and entropy input for the first call to generate. The final two are additional input and entropy
input for the second call to generate. These values are randomly generated. "generate one block of
random bits" means to generate random bits with number of returned bits equal to the Output
Block Length (as defined in NIST SP800-90A).

If the RNG does not have prediction resistance, each trial consists of (1) instantiate DRBG, (2)
generate the first block of random bits (3) reseed, (4) generate a second block of random bits (5)
uninstantiate. The evaluator verifies that the second block of random bits is the expected value. The
evaluator shall generate eight input values for each trial. The first is a count (0 - 14). The next three
are entropy input, nonce, and personalization string for the instantiate operation. The fifth value is
additional input to the first call to generate. The sixth and seventh are additional input and entropy
input to the call to reseed. The final value is additional input to the second generate call.

The following paragraphs contain more information on some of the input values to be
generated/selected by the evaluator.

Entropy input: the length of the entropy input value must equal the seed length.

Nonce: If a nonce is supported (CTR_DRBG with no Derivation Function does not use a nonce), the
nonce bit length is one-half the seed length.

Personalization string: The length of the personalization string must be <= seed length. If the
implementation only supports one personalization string length, then the same length can be used
for both values. If more than one string length is support, the evaluator shall use personalization
strings of two different lengths. If the implementation does not use a personalization string, no
value needs to be supplied.

Additional input: the additional input bit lengths have the same defaults and restrictions as the
personalization string lengths.

2.1.4.1.4. KMD

There are no KMD evaluation activities for this component.

42

2.1.5. Cryptographic Salt Generation (Extended - FCS_SLT_EXT)

2.1.5.1. FCS_SLT_EXT.1 Cryptographic Salt Generation

2.1.5.1.1. TSS

The evaluator shall ensure the TSS describes how salts are generated using the RBG.

2.1.5.1.2. AGD

There are no AGD evaluation activities for this component.

2.1.5.1.3. Test

The evaluator shall confirm by testing that the salts obtained in the cryptographic operations that
use the salts are of the length specified in FCS_SLT_EXT.1, are obtained from the RBG, and are fresh
on each invocation.

Note: in general these tests may be carried out as part of the tests of the relevant cryptographic
operations.

2.1.5.1.4. KMD

There are no KMD evaluation activities for this component.

2.1.6. Cryptographic Key Storage (Extended - FCS_STG_EXT)

2.1.6.1. FCS_STG_EXT.1 Protected Storage

2.1.6.1.1. TSS

The evaluator shall review the TSS to determine that the TOE implements the required protected
storage. The evaluator shall ensure that the TSS contains a description of the protected storage
mechanism that justifies the selection of mutable hardware-based or software-based.

2.1.6.1.2. AGD

The evaluator shall examine the operational guidance to ensure that it describes the process for
generating keys, importing keys, or both, based on what is claimed by the ST. The evaluator shall
also examine the operational guidance to ensure that it describes the process for destroying keys
that have been imported or generated.

2.1.6.1.3. Test

The evaluator shall test the functionality of each security function as described below. If the TOE
supports both import and generation of keys, the evaluator shall repeat the testing as needed to
demonstrate that the keys resulting from both operations are treated in the same manner. The
devices used with the tooling may need to be non-production devices in order to enable the
execution and gathering of evidence.

Test 1: The evaluator shall import or generate keys/secrets of each supported type according to the

43

operational guidance. The evaluator shall write, or the developer shall provide access to, an
application that generates a key/secret of each supported type and calls the import functions. The
evaluator shall verify that no errors occur during import.

Test 2: The evaluator shall write, or the developer shall provide access to, an application that uses a
generated or imported key/secret:

• For RSA, the secret shall be used to sign data.

• For ECDSA, the secret shall be used to sign data.

The evaluator shall repeat this test with the application-imported or application-generated
keys/secrets and a different application’s imported keys/secrets or generated keys/secrets. The
evaluator shall verify that the TOE requires approval before allowing the application to use the
key/secret imported or generated by the user or by a different application:

• The evaluator shall deny the approvals to verify that the application is not able to use the
key/secret as described.

• The evaluator shall repeat the test, allowing the approvals to verify that the application is able
to use the key/secret as described.

2.1.6.1.4. KMD

There are no KMD evaluation activities for this component.

2.1.6.2. FCS_STG_EXT.2 Key Storage Encryption

2.1.6.2.1. TSS

The evaluator shall review the TSS to determine that the TSS describes the protection of symmetric
keys, KEKs, long-term trusted channel key material, and software-based key storage as claimed in
FCS_STG_EXT.2.1.

2.1.6.2.2. AGD

There are no AGD evaluation activities for this component.

2.1.6.2.3. Test

There are no test evaluation activities for this component.

2.1.6.2.4. KMD

There are no KMD evaluation activities for this component.

2.1.6.3. FCS_STG_EXT.3 Key Integrity Protection

2.1.6.3.1. TSS

The evaluator shall examine the TSS and ensure that it contains a description of how the TOE
protects the integrity of its keys.

44

2.1.6.3.2. AGD

There are no AGD evaluation activities for this component.

2.1.6.3.3. Test

There are no test evaluation activities for this component.

2.1.6.3.4. KMD

There are no KMD evaluation activities for this component.

2.2. User Data Protection (FDP)

2.2.1. Access Control Policy (FDP_ACC)

2.2.1.1. FDP_ACC.1 Subset Access Control

2.2.1.1.1. TSS

The evaluator shall confirm that the TSS contain the access control policy implemented by the TOE.
I.e., the ST author lists each object and identifies for each object, which operations the TSF permits
for each subject (i.e. what can "admins" do vs "users").

2.2.1.1.2. AGD

There are no guidance evaluation activities for this component.

2.2.1.1.3. Test

Testing for FDP_ACF includes testing this component.

2.2.1.1.4. KMD

There are no KMD evaluation activities for this component.

2.2.2. Access Control Functions (FDP_ACF)

2.2.2.1. FDP_ACF.1 Security Attribute Based Access Control

2.2.2.1.1. TSS

The evaluator shall examine the TSS to verify that it describes the policy rules for the Access
Control SFP. Specifically, the evaluator should be able to identify, for any arbitrary subject-object-
operation pairing, which of the following is true:

a. The subject can always perform the desired operation.

b. The subject can never perform the desired operation, either because they lack sufficient
permission or because the TSF includes no interface to support the operation.

c. The subject can only perform the desired operation under certain conditions (which the

45

evaluator shall verify are described in the TSS). For example, "the S.CA subject may only
perform the OP.Destroy operation on an OB.SDO object if it was the subject that originally
created or imported the SDO."

d. The subject can only perform the desired operation on one or more attributes of the object as
opposed to the entire object itself (which the evaluator shall verify are identified in the TSS).

e. Whether the subject can perform the desired operation depends on TSF configuration (which
the evaluator shall verify is described in the TSS as part of the evaluation of FMT_SMF.1).

f. Some combination of c, d, and e.

Given that this SFR requires a large number of potential subject-object-operation pairings to be
identified, it is not the expectation that the TSS contain an exhaustive list of these pairings. It is
possible that large numbers of pairings are addressed by blanket statements of policy rules, such as
"the subjects S.DSC and S.CA are never able to perform any operation on the OB.AntiReplay object."
For any rules that are not addressed in this manner, the evaluator shall verify the TSS includes
sufficient data for the evaluator to determine how the TSF will evaluate the action. This can be
presented in the form of a table, flowchart, list, or other manner that the ST author finds suitable.

Note that the DSC developer may not use the same terminology for its subjects, objects, and
operations as the PP. If this is the case, the evaluator shall verify that the TSS includes a mapping
that unambiguously shows how the vendor’s preferred terminology corresponds to what the PP
defines.

2.2.2.1.2. AGD

For any access control policy enforcement behavior that is configurable, the evaluator shall ensure
that the operational guidance describes how to perform the configuration, including any
restrictions on permissible configurable settings.

2.2.2.1.3. Test

The following testing may require the TOE developer to make a test harness available to the
evaluator that allows the evaluator to interface directly with the DSC. Due to the large volume of
potential testing that this requires, this test may require the use of an automated script. If a test
script is made available, the evaluator shall verify that it includes sufficient detail to validate the
claims made in the TSS.

For each subject/object/operation/attribute combination, the evaluator shall attempt to perform the
operation or determine that no interface is present to attempt the operation, consistent with the
limitations described in the TSS.

For each case where an operation is always permitted or never permitted, both positive and
negative testing will be conducted implicitly by attempting the operation with all possible subjects
and determining that the intended results occur in each case.

For each case where the operation succeeds or fails based on the target object attribute, the
evaluator shall ensure that both positive and negative testing is performed such that only the
correct target attributes can be operated upon.

For each case where the operation succeeds or fails based on one or more specific conditions, the

46

evaluator shall ensure that both positive and negative testing is performed such that the presence
of the conditions causes the test to succeed while the absence of the conditions causes the test to
fail.

For each case where the operation succeeds or fails based on an administratively configured
setting, the evaluator shall ensure that both positive and negative testing is performed such that the
configuration setting can be shown to affect whether or not the operation succeeds.

2.2.2.1.4. KMD

There are no KMD evaluation activities for this component.

2.2.3. Export from the TOE (Extended - FDP_ETC_EXT)

2.2.3.1. FDP_ETC_EXT.2 Propagation of SDOs

2.2.3.1.1. TSS

The evaluator shall examine the TSS to ensure that it describes how it protects the SDO references,
authorization data, against access from unauthorized entities. If the TSF is selected, then it should
describe how it provides confidentiality of the data while it resides outside the TOE.

2.2.3.1.2. AGD

There are no guidance evaluation activities for this component.

2.2.3.1.3. Test

There are no test evaluation activities for this component.

2.2.3.1.4. KMD

There are no KMD evaluation activities for this component.

2.2.4. Factory Reset (Extended - FDP_FRS_EXT)

2.2.4.1. FDP_FRS_EXT.1 Factory Reset

2.2.4.1.1. TSS

The evaluator shall examine the TSS to determine that it describes each of the conditions which will
lead to a factory reset.

2.2.4.1.2. AGD

The evaluator shall examine the operational guidance to ensure that it describes the ways the
administrator can set the conditions to initiate a factory reset.

2.2.4.1.3. Test

The evaluator shall identify all functions that resets the DSC to factory setting. For each function,
the evaluator shall identify all methods for authorizing the factory reset. For each function and for

47

each authorization method, the evaluator shall create an SDE or SDO. The evaluator shall then
verify the presence of the item just created. The evaluator shall initiate a factory reset using the
selected function and authorization method and verify the item no longer exists.

2.2.4.1.4. KMD

There are no KMD evaluation activities for this component.

2.2.5. Import from Outside the TOE (Extended - FDP_ITC_EXT)

2.2.5.1. FDP_ITC_EXT.1 Parsing of SDEs

2.2.5.1.1. TSS

The evaluator shall confirm the TSS contains descriptions of the supported methods the TSF uses to
import SDEs into the TOE. For each import method selected, the TSS shall describe integrity
verification schemes employed. The TSS shall also list the ways the TSF generates and binds
security attributes to the SDEs.

2.2.5.1.2. AGD

There are no AGD evaluation activities for this component.

2.2.5.1.3. Test

For each supported import method selected in FDP_ITC_EXT.1.1 and for each supported integrity
verification method selected in FDP_ITC_EXT.1.2. used by the selected import method, provide one
SDE with valid integrity credentials, one with invalid integrity credentials (e.g. hash). The
operations with invalid integrity credentials must result in error. The operations with valid
integrity credentials must return an SDO with valid security attributes in accordance with
FDP_ITC_EXT.1.4.

2.2.5.1.4. KMD

There are no KMD evaluation activities for this component.

2.2.5.2. FDP_ITC_EXT.2 Parsing of SDOs

2.2.5.2.1. TSS

The evaluator shall confirm the TSS contains descriptions of the supported methods the TSF uses to
import SDOs into the TOE. For each import method selected, the TSS shall describe integrity
verification schemes employed. The TSS shall also list the ways the TSF generates and binds
security attributes to the SDOs.

2.2.5.2.2. AGD

There are no AGD evaluation activities for this component.

48

2.2.5.2.3. Test

For each supported import method selected in FDP_ITC_EXT.2.1 and for each supported integrity
verification method selected in FDP_ITC_EXT.2.2 used by the selected import method, provide one
SDO with valid integrity credentials, one with invalid integrity credentials (e.g. hash). The
operations with invalid integrity credentials must result in error. The operations with valid
integrity credentials must return an SDO with valid security attributes in accordance with
FDP_ITC_EXT.2.3, FDP_ITC_EXT.2.4, and FDP_ITC_EXT.2.5.

2.2.5.2.4. KMD

There are no KMD evaluation activities for this component.

2.2.6. Mutable/Immutable Firmware (Extended - FDP_MFW_EXT)

2.2.6.1. FDP_MFW_EXT.1 Mutable/Immutable Firmware

2.2.6.1.1. TSS

The evaluator shall examine the TSS and ensure that details of which firmware components are
considered mutable and which firmware components are considered immutable, as well as how
these firmware components can/cannot be modified or altered, are described. For example, DSC
firmware components that are stored in ROM would be considered immutable.

2.2.6.1.2. AGD

If the TOE has mutable firmware, the evaluator shall examine the operational guidance to ensure
that it describes how to modify the firmware.

2.2.6.1.3. Test

If the TOE has mutable firmware, the evaluator shall perform the activities described in the
operational guidance to modify the firmware.

2.2.6.1.4. KMD

There are no KMD evaluation activities for this component.

2.2.7. Residual Information Protection (FDP_RIP)

2.2.7.1. FDP_RIP.1 Subset Residual Information Protection

2.2.7.1.1. TSS

The evaluator shall check to ensure that the TSS describes resource deallocation to the extent that
they can determine that no data will be reused when reallocating resources following the
destruction of an SDE or SDO. The evaluator shall ensure that this description at a minimum
describes how the previous data is destroyed. The evaluator shall also ensure that this destruction
method is consistent with FCS_CKM.4.

49

2.2.7.1.2. AGD

There are no AGD evaluation activities for this component.

2.2.7.1.3. Test

Testing for FCS_CKM.4 is sufficient to address this component.

2.2.7.1.4. KMD

There are no KMD evaluation activities for this component.

2.2.8. Stored data confidentiality with dedicated method

2.2.8.1. FDP_SDC.2 Stored data confidentiality with dedicated method

2.2.8.1.1. TSS

The evaluator shall examine the TSS to determine that it describes the protection for SDEs and
authorization data and the methods of protection (e.g. protected storage, symmetric encryption, key
wrapping, etc.).

The evaluator shall also examine the TSS to determine whether the TSF stores this data inside the
TOE boundary or in its operational environment. If the TSF stores this data inside the TOE
boundary, the evaluator shall ensure that TSF uses one of the listed methods to provide
confidentiality. If the data is stored in the TOE’s operational environment, the evaluator shall
ensure that the TSF uses key wrapping to provide confidentiality.

The evaluator shall examine the TSS to confirm it sufficiently describes each method used to
provide confidentiality for SDEs. The evaluator shall also confirm that the TOE supports all
encryption methods selected.

2.2.8.1.2. AGD

There are no AGD evaluation activities for this component.

2.2.8.1.3. Test

If the TOE stores SDEs and authorization data inside the TSF, the evaluator shall ensure that
external interfaces cannot extract this data in plaintext.

In this case, use the evaluation activities of the FPT_PHP.3 if protected storage is selected,
FCS_COP.1/SKC if symmetric encryption using… is selected, and FCS_COP.1/KAT if key wrapping
using… is selected.

If the TOE stores authentication data inside the operational environment, the evaluator shall
ensure that plaintext data is not visible on the interface between the TOE and the operational
environment.

2.2.8.1.4. KMD

There are no KMD evaluation activities for this component.

50

2.2.9. Stored Data Integrity (FDP_SDI)

2.2.9.1. FDP_SDI.2 Stored Data Integrity Monitoring and Action

2.2.9.1.1. TSS

The evaluator shall confirm that the ST author describes the methods for protecting the integrity of
SDOs stored with the TOE, and shall identify the iteration of FCS_COP.1/Hash or FCS_COP.1/HMAC
that covers any cryptographic algorithm used. The evaluator shall also confirm that the TSS
describes the response upon the detection of an integrity error.

The evaluator shall confirm that the TSS describes the actions the TSF takes when the integrity
verification fails for an SDO, including the circumstances that cause a notification to be sent when
this occurs.

The evaluator shall confirm that TSS describes how integrity of SDOs is protected in FMT_MSA.3
during initialization, and how the integrity of SDOs are verified during parsing (import) in
FDP_ITC_EXT.

2.2.9.1.2. AGD

The evaluator shall examine the operational guidance to verify that it describes the conditions that
cause a notification to be sent when an integrity error is detected, and what the contents of the
notification are.

2.2.9.1.3. Test

The tests for FDP_ITC_EXT and FMT_MSA.3 shall suffice for this component.

2.2.9.1.4. KMD

There are no KMD evaluation activities for this component.

2.3. Identification and Authentication (FIA)

2.3.1. Authorization Failure Handling (Extended - FIA_AFL_EXT)

2.3.1.1. FIA_AFL_EXT.1 Authorization Failure Handling

2.3.1.1.1. TSS

The evaluator shall examine the TSS to determine that it contains a description for how successive
unsuccessful authorization attempts are detected and tracked. The evaluator shall examine the TSS
to determine that is contains a description of the actions in the event that the authorization attempt
threshold is met or exceeded.

The evaluator shall also examine the TSS to determine that it describes how the failed authorization
attempt counter is incremented before the authorization is verified.

The evaluator shall also examine the TSS to determine the behaviour that will occur if there are

51

excessive failed authorization attempts, specifically whether future attempts are prevented for a
static or configurable amount of time, future attempts are prevented indefinitely, or a factory reset
is triggered.

2.3.1.1.2. AGD

The evaluator shall examine the guidance documentation to ensure that instructions for
configuring the number of successive unsuccessful authentication attempts and time period (if
implemented) are provided, and that the process of unlocking the SDOs is described for each
"action" specified (if that option is chosen).

The evaluator shall examine the guidance documentation to confirm that it describes, and
identifies the importance of, any actions that are required in order to ensure that access to SDOs
can be maintained, unless it is made permanently unavailable due to a factory reset.

2.3.1.1.3. Test

The evaluator shall perform the following tests for each method by which the TSF authorizes access
the SDOs (e.g. any passwords entered as part of establishing authorization):

Test 1: The evaluator shall use the operational guidance to configure the number of successive
unsuccessful authorization attempts allowed by the TOE (and, if the time period selection in
FIA_AFL_EXT.1.3 is included in the ST, then the evaluator shall also use the operational guidance to
configure the time period after which access is re-enabled). The evaluator shall test that once the
authorization attempts limit is reached, authorization attempts with valid credentials are no longer
successful.

Test 2: After reaching the limit for unsuccessful authorization attempts as in Test 1 above, the
evaluator shall proceed as follows. If the action selected in FIA_AFL_EXT.1.3 is included in the ST
then the evaluator shall confirm by testing that following the operational guidance and performing
each action specified in the ST to re-enable access results in successful access. If the time period
selection in FIA_AFL_EXT.1.3 is included in the ST, then the evaluator shall wait for just less than the
time period configured in Test 1 and show that an authorization attempt using valid credentials
does not result in successful access. The evaluator shall then wait until just after the time period
configured in Test 1 and show that an authorization attempt using valid credentials results in
successful access.

Test 3 [conditional]: If factory reset the TOE wiping out all non-permanent SDOs, as described by
FDP_FRS_EXT.2 is selected in FIA_AFL_EXT.1.3, the evaluator shall perform the test required by
FDP_FRS_EXT.2 with step 5 replaced with "The evaluator shall initiate a factory reset by deliberately
meeting or surpassing the threshold for unsuccessful authorization attempts, depending on
whether meets or surpasses is selected in FIA_AFL_EXT.1.3."

2.3.1.1.4. KMD

There are no KMD evaluation activities for this component.

2.3.2. Specification of Secrets (FIA_SOS)

52

2.3.2.1. FIA_SOS.2 TSF Generation of Secrets

2.3.2.1.1. TSS

The evaluator shall ensure that the TSS describes for each of the TSF functions listed in FIA_SOS.2.2,
if the available key space is configurable, and the size (or range) of the key space employed to
generate authorization values.

The evaluator shall ensure that the TSS states that the quality metrics provided is based on the
assumption of sufficient entropy being provided in accordance with the information given in [DSC
cPP] Annex D.

The evaluator shall ensure that the TSS describes the restrictions implemented in order to restrict
consecutive authentication attempts. (Authentication throttling)

The evaluator shall ensure that the TSS describes the mechanism used to generate authorization
values and documents the quality metric that the mechanism provides. The information provided
in the TSS shall demonstrate that:

a. The probability that a random single authentication attempt will be successful is less than one
in 1,000,000; and

b. The probability that random multiple authentication attempts during a one (1) minute period
will be successful is less than one in 100,000.

2.3.2.1.2. AGD

The evaluator shall examine the guidance documentation to determine that it describes any
configuration necessary to enforce the use of TSF generated authorization values listed in
FIA_SOS.2.2.

The evaluator shall ensure that the guidance documentation provides any instructions needed to
set parameters affecting the available key spaces.

2.3.2.1.3. Test

The evaluator shall perform the following tests.

Test 1: The evaluator shall compose a set of 50 authorization values that meet the requirements,
and 50 authorization values that fail to meet the requirements.

a. For each authentication value that meets the requirements, the evaluator shall verify that the
TOE supports the authentication value.

b. For each authentication value that does not meet the requirements, the evaluator shall verify
that the TOE does not support the authentication value.

While the evaluator is not required (nor is it feasible) to test all possible compositions of
authentication values, the evaluator shall ensure that the key space identified in the TSS is valid.

Test 2: For each TSF function listed in FIA_SOS.2.2 the TOE shall be configured to generate the
authentication values; the evaluator shall check that the TOE produces the authentication values.

53

2.3.2.1.4. KMD

There are no KMD evaluation activities for this component.

2.3.3. User Authentication (FIA_UAU)

2.3.3.1. FIA_UAU.2 User Authentication before Any Action

2.3.3.1.1. TSS

The evaluator shall examine the TSS to determine that it describes the identification and
authentication process for each supported method (PIN/try-PIN, salted hash, etc.), the
circumstances in which each supported method is used, and constitutes "successful authentication."

The evaluator shall examine the TSS to determine that it describes which actions are allowed
before user identification and authentication. The evaluator shall also determine that the TSS
describes, for each action that does require identification and authentication, the method and
circumstances by which the authentication is performed (e.g., as per the application note, the TSF
may authenticate a user once rather than each time access to an SDO is attempted; the TSS shall
describe when authentication is or is not required in order to perform a TSF-mediated action).

2.3.3.1.2. AGD

The evaluator shall examine the guidance documentation to determine that any necessary
preparatory steps (e.g., establishing valid credential material such as PIN) to logging in are
described. For each supported the login method, the evaluator shall ensure the guidance
documentation provides clear instructions for successfully logging on.

2.3.3.1.3. Test

The evaluator shall use the guidance documentation to configure the appropriate credentials
supported for each authentication method. For that authentication method, the evaluator shall
attempt to perform TSF-mediated actions that require successful use of that authentication method
and subsequently show that providing correct I&A information results in the ability to perform the
requested action, while providing incorrect information results in denial of access.

2.3.3.1.4. KMD

There are no KMD evaluation activities for this component.

2.3.3.2. FIA_UAU.5 Multiple Authentication Mechanisms

2.3.3.2.1. TSS

The evaluator shall examine the TSS and ensure that it describes the authentication mechanisms
used to support user authentication for the Prove service as well as how each authentication
mechanism provides authentication for the Prove service.

2.3.3.2.2. AGD

If the supported authentication mechanisms are configurable, the evaluator shall examine the

54

operational guidance to verify that it describes how to configure the authentication mechanisms
used to provide authentication for the Prove service.

2.3.3.2.3. Test

For each supported authentication mechanism, the evaluator shall verify that valid credentials
result in successful authentication and invalid credentials result in a rejected authentication
attempt. If the supported authentication mechanisms are configurable, the evaluator shall follow
the operational guidance to enable/disable the various mechanisms and ensure that valid
credentials do not result in successful authentication if that mechanism is disabled, or that there is
no interface to provide authentication credentials over an external interface when that mechanism
is disabled.

2.3.3.2.4. KMD

There are no KMD evaluation activities for this component.

2.3.3.3. FIA_UAU.6 Re-Authenticating

2.3.3.3.1. TSS

The evaluator shall examine the TSS to determine that it describes each of the options for
reauthorization.

2.3.3.3.2. AGD

There are no AGD evaluation activities for this component.

2.3.3.3.3. Test

The evaluator shall use the configuration guidance to create an SDO with each of the options for
reauthorization, then identify functions to exercise each of these options, then execute these
options providing the correct authorization confirming that the operation succeeded with respect
to the reauthorization option chosen. The evaluator shall then attempt to execute these functions
while providing the incorrect authorization and confirming that the operation fails.

2.3.3.3.4. KMD

There are no KMD evaluation activities for this component.

2.4. Security Management (FMT)

2.4.1. Management of Functions in TSF (Extended - FMT_MOF_EXT)

2.4.1.1. FMT_MOF_EXT.1 Management of Security Functions Behavior

2.4.1.1.1. TSS

The evaluator shall verify that the TSS describes those management functions that may be
performed by the Administrator, to include how the client applications are prevented from

55

accessing, performing, or relaxing the function (if applicable), and how they are prevented from
modifying the Administrator configuration. The TSS also describes any functionality that is affected
by administrator-configured policy and how. This activity will be performed in conjunction with
FMT_SMF_EXT.1.

2.4.1.1.2. AGD

There are no AGD evaluation activities for this component.

2.4.1.1.3. Test

For each management function described in FMT_SMF.1.1, the evaluator shall perform the function
with administrator authorization data and confirm it succeeds, and again with client application
authorization data and confirm that it fails.

2.4.1.1.4. KMD

There are no KMD evaluation activities for this component.

2.4.2. Management of Security Attributes (FMT_MSA)

2.4.2.1. FMT_MSA.1 Management of Security Attributes

2.4.2.1.1. TSS

The evaluator shall confirm that the TSS describes the modification constraints for each SDO
security attribute.

2.4.2.1.2. AGD

There are no AGD evaluation activities for this component.

2.4.2.1.3. Test

The evaluator shall confirm that the evaluation activities for FDP_ACF.1 contains tests for the
OP.Modify operation on objects OB.P_SDO, OB.T_SDO.

2.4.2.1.4. KMD

There are no KMD evaluation activities for this component.

2.4.2.2. FMT_MSA.3 Static Attribute Initialization

2.4.2.2.1. TSS

The evaluator shall confirm that the TSS describes the initialization process for importing and
generating SDOs. The TSS shall describe each type of SDO.Type and any additional attributes that
are beyond the ones listed. Additionally, list any further restrictions of the allowed values for the
minimum list of attributes.

The evaluator shall confirm that the TSS describes the allowed values for each of the attributes.

56

2.4.2.2.2. AGD

There are no AGD evaluation activities for this component.

2.4.2.2.3. Test

The evaluator shall confirm that the evaluation activities for FDP_ACF.1 contains tests for the
OP.Import and OP.Create operations on objects OB.P_SDO, OB.T_SDO.

2.4.2.2.4. KMD

There are no KMD evaluation activities for this component.

2.4.3. Specification of Management Functions (FMT_SMF)

2.4.3.1. FMT_SMF.1 Specification of Management Functions

2.4.3.1.1. TSS

The evaluator shall verify that the TSS describes all management functions.

2.4.3.1.2. AGD

The evaluator shall verify that the AGD describes how the administrator configures the
management functions.

2.4.3.1.3. Test

Testing for this component is performed through evaluation of FMT_MOF_EXT.1.

2.4.3.1.4. KMD

There are no KMD evaluation activities for this component.

2.4.4. Security Management Roles (FMT_SMR)

2.4.4.1. FMT_SMR.1 Security Roles

2.4.4.1.1. TSS

The evaluator shall confirm that the TSS describes the mechanisms by which client applications can
exclusively access their own encrypted data and administrators cannot access client application
encrypted data. The evaluator shall also confirm the TSS describes the mechanisms that allow only
administrators to perform privileged functions.

2.4.4.1.2. AGD

The evaluator shall verify that the AGD describes how the administrator configures the
management functions.

57

2.4.4.1.3. Test

Testing for this component is performed through evaluation of FMT_MOF_EXT.1.

2.4.4.1.4. KMD

There are no KMD evaluation activities for this component.

2.5. Protection of the TSF (FPT)

2.5.1. Fail Secure (FPT_FLS)

2.5.1.1. FPT_FLS.1/FI Failure with Preservation of Secure State (Fault Injection)

2.5.1.1.1. TSS

The evaluator shall examine the TSS to verify that it describes the actions taken when the TOE
experiences fault injection and how the DSC preserves a secure state.

The evaluator shall verify that the TSS describes the state of the DSC when the firmware validity
checks fail, including the various failure modes assumed.

2.5.1.1.2. AGD

The evaluator shall examine the operational guidance to verify that it describes what actions
should be taken to attempt to resolve the failed state.

2.5.1.1.3. Test

Refer to the testing for FPT_PHP.3.

2.5.1.1.4. KMD

There are no KMD evaluation activities for this component.

2.5.2. Debug Modes (Extended - FPT_MOD_EXT)

2.5.2.1. FPT_MOD_EXT.1 Debug Modes

2.5.2.1.1. TSS

The evaluator shall examine the TSS to ensure it describes the mechanisms the TSF employs to
prevent access to debug modes with a brief description of each debug mode supported.

2.5.2.1.2. AGD

There are no AGD evaluation activities for this component.

2.5.2.1.3. Test

The evaluator shall attempt to exercise any single function from each supported debug mode. If the
evaluator is able to exercise any function from any of the supported debug modes, the test is a 'Fail',

58

otherwise, the test is a 'Pass'.

2.5.2.1.4. KMD

There are no KMD evaluation activities for this component.

2.5.3. TSF Physical Protection (FPT_PHP)

2.5.3.1. FPT_PHP.3 Resistance to Physical Attack

2.5.3.1.1. TSS

The evaluator shall examine the TSS to ensure it describes the methods used by the TOE to detect
physical tampering and how the TOE will respond when physical tampering has been detected.

The evaluator shall also examine the TSS to ensure that it documents the temperature and voltage
ranges in which the TSF is assured to operate properly.

2.5.3.1.2. AGD

There are no AGD evaluation activities for this component.

2.5.3.1.3. Test

All tests here are based on an attempted Fault Injection.

The evaluator shall perform fault injection on the DSC and attempt to extract a known SDO/SDE.

The evaluator shall cause the DSC to parse or generate an SDO/SDE with a known value. The
evaluator will then cause the TOE to process the SDO/SDE, possibly multiple times, while injecting
faults on the TOE.

This test is repeated for each type of Fault Injection.

If the evaluator is able to acquire the original SDO/SDE or a known result from the DSC processing
the SDO/SDE, the test is a 'Fail', otherwise, the test is a 'Pass'.

Test 1: Temperature

The following testing is derived from [ISO 24759] test procedures TE07.77.01 through TE07.77.03:

The evaluator shall configure the temperature of the TOE close to the approximate extreme of the
normal operating range specified in the TSS and verify that the TSF continues to function as
expected. This may be done via ambient temperature or induced locally as is most appropriate for
the TOE (and the accessibility to the physical component).

The evaluator shall determine 'expected functionality' based on how the TSS describes the TOE’s
reaction to an environmental failure. For example, if the TSS states that the TOE’s response is to
shut down, it can be assumed that the TOE functions as expected if it does not shut down. If the TSS
states that the TOE’s response is to zeroize certain data, it can be assumed that the TOE functions as
expected if the evaluator performs functions that rely on known data values and obtain results that
indicate non-zero values.

59

The evaluator shall then extend the temperature outside of the specified normal range and verify
that the TOE responds in the manner specified in the ST. If the TOE’s response is to zeroize known
data, the evaluator shall return the ambient temperature to a normal range, perform functions that
rely on known data values, and observe that the results of these functions are consistent with
known values of zero.

Test 2: Power Analysis

The following testing is derived from [ISO 24759] test procedures TE07.77.01 through TE07.77.03:

The evaluator shall configure the voltage of the TOE close to the approximate extreme of the
normal operating range specified in the TSS and verify that the TSF continues to function as
expected.

The evaluator shall determine 'expected functionality' based on how the TSS describes the TOE’s
reaction to an environmental failure. For example, if the TSS states that the TOE’s response is to
shut down, it can be assumed that the TOE functions as expected if it does not shut down. If the TSS
states that the TOE’s response is to zeroize certain data, it can be assumed that the TOE functions as
expected if the evaluator performs functions that rely on known data values and obtain results that
indicate non-zero values.

The evaluator shall then extend the voltage outside of the specified normal range and verify that
the TOE responds in the manner specified in the ST. If the TOE’s response is to zeroize known data,
the evaluator shall return the voltage to a normal range, perform functions that rely on known data
values, and observe that the results of these functions are consistent with known values of zero.

The evaluator shall then induce a voltage glitch outside of the specified normal range and verify
that the TOE responds in the manner specified in the ST. If the TOE’s response is to zeroize known
data, the evaluator shall return the voltage to a normal range, perform functions that rely on
known data values, and observe that the results of these functions are consistent with known
values of zero.

2.5.3.1.4. KMD

There are no KMD evaluation activities for this component.

2.5.4. Root of Trust (Extended - FPT_PRO_EXT)

2.5.4.1. FPT_PRO_EXT.1 Root of Trust

2.5.4.1.1. TSS

The evaluator shall ensure that the TSS describes either a pre-installed identity (contained within
an SDO), or a process on how the TOE creates an identity. IEEE 802.1ar is one example of a standard
which a device can use to create such an identity.

The evaluator shall additionally examine the TSS to ensure that it describes how the Root of Trust is
immutable or otherwise mutable if and only if controlled by a unique identifiable owner, the roles
this owner assumes in doing so (manufacturer administrator, owner administrator, etc.), as well as
the circumstances in which the Root of Trust is mutable.

60

[conditional] For an immutable Root of Trust, the evaluator shall ensure there are no RoT update
functions.

[conditional] For a mutable Root of Trust, the evaluator shall ensure the Root of Trust update
mechanism uses an approved method for authenticating the source of the update.

2.5.4.1.2. AGD

For mutable Root of Trust data, the evaluator shall confirm the AGD contains an approved
authenticated method for modifying the Root of Trust identity.

2.5.4.1.3. Test

Immutability

For immutable Root of Trust identity, the evaluator shall confirm a successful evaluation of
FPT_PHP.3 (Resistance to Physical Attack).

Mutability

For a mutable Root of Trust identity, the evaluator shall perform the following tests:

1. Create or use an authenticated Root of Trust identity, confirm the authenticated method for
modifying the Root of Trust identity succeeds.

2. Create or use an unauthenticated Root of Trust identity, confirm the target fails to modify the
Root of Trust identity.

2.5.4.1.4. KMD

There are no KMD evaluation activities for this component.

2.5.5. Root of Trust Services (Extended - FPT_ROT_EXT)

2.5.5.1. FPT_ROT_EXT.1 Root of Trust Services

2.5.5.1.1. TSS

The evaluator shall ensure that the TSS identifies the Roots of Trust it uses (including but not
limited to the Roots of Trust identified in the selections in this requirement) and describes their
function in the context of the TOE.

2.5.5.1.2. AGD

There are no AGD evaluation activities for this component.

2.5.5.1.3. Test

Root of Trust for Storage

The evaluator shall confirm a successful evaluation of FCS_CKM.1, FCS_STG_EXT.1, FCS_STG_EXT.2,
FCS_STG_EXT.3, FPT_PHP.3.

61

Root of Trust for Authorization

The evaluator shall confirm a successful evaluation of FIA_AFL_EXT.1.

Root of Trust for Measurement

The evaluator shall confirm a successful evaluation of FCS_COP.1/Hash.

Root of Trust for Reporting

The evaluator shall confirm a successful evaluation of FCS_COP.1/SigGen.

2.5.5.1.4. KMD

There are no KMD evaluation activities for this component.

2.5.5.2. FPT_ROT_EXT.2 Root of Trust for Storage

2.5.5.2.1. TSS

The evaluator shall ensure that the TSS describes how the Root of Trust for Storage prevents
unauthorized access to SDOs. The evaluator shall also examine the TSS to verify that it uses
approved mechanisms to protect the integrity of SDOs.

2.5.5.2.2. AGD

There are no AGD evaluation activities for this component.

2.5.5.2.3. Test

Testing for this component is completed through evaluation of FCS_CKM.1, FCS_STG_EXT.1,
FCS_STG_EXT.2, FCS_STG_EXT.3, and FPT_PHP.3.

2.5.5.2.4. KMD

There are no KMD evaluation activities for this component.

2.5.6. Replay Prevention (FPT_RPL)

2.5.6.1. FPT_RPL.1/Authorization Replay Prevention

2.5.6.1.1. TSS

The evaluator shall examine the TSS to verify that it describes the mechanism employed for
preventing replay of user authorization of operations on SDOs and that access is denied when
replay is detected.

2.5.6.1.2. AGD

The evaluator shall examine the operational guidance to verify that it describes how to enforce
Replay Prevention if configuration is necessary.

62

2.5.6.1.3. Test

The evaluator shall perform an authorization of an operation on an SDO and capture or retain that
authorization for reuse. The evaluator shall then attempt to replay that same authorization and
ensure that the DSC does not allow the authorization to take place. If the replay of the authorization
is allowed to take place for an operation on SDOs, the test is a 'Fail', otherwise, the test is a 'Pass'.

2.5.6.1.4. KMD

There are no KMD evaluation activities for this component.

2.5.7. Time Stamps (FPT_STM)

2.5.7.1. FPT_STM.1 Reliable Time Stamps

2.5.7.1.1. TSS

The evaluator shall examine the TSS to ensure that it lists each security function that makes use of
time. The TSS provides a description of how the time is maintained and considered reliable in the
context of each of the time related functions.

The evaluator shall examine the TSS and other vendor documentation and ensure they describe the
location of the time source for the TSF.

[conditional] For a time source that is outside the TOE but contained inside the same physical
enclosure, the evaluator shall ensure there is a description of how the time is obtained from the
source outside the TOE.

2.5.7.1.2. AGD

The evaluator shall examine the guidance documentation to ensure it instructs the administrator
how to set the time or indicates any configuration steps required for the TSF to receive time data
from an external source.

2.5.7.1.3. Test

The evaluator shall perform the following tests:

Test 1 [conditional]: If the TSF provides a mechanism to manually set the time, the evaluator shall
use the guidance documentation to set the time. The evaluator shall then use an available interface
to observe that the time was set correctly.

Test 2 [conditional]: If the TSF receives time data from some source outside the TOE, the evaluator
shall use the guidance documentation to configure the external time source (if applicable). The
evaluator shall observe that the time has been set to the expected value.

2.5.7.1.4. KMD

There are no KMD evaluation activities for this component.

63

2.5.8. TSF Self Test (FPT_TST)

2.5.8.1. FPT_TST.1 TSF Testing

2.5.8.1.1. TSS

The evaluator shall examine the TSS and other vendor documentation and ensure they describe the
methods used to verify integrity of the TSF and TSF data. The evaluator shall also verify that the TSS
describes how the tests are performed automatically and autonomously (without intervention).

2.5.8.1.2. AGD

The evaluator shall examine the operational guidance to ensure it provides authorized users with
the capability to verify the integrity of the TSF and its data.

2.5.8.1.3. Test

Test 1: The evaluator shall verify that the DSC performs an integrity check of all TSF, including data,
as well as performing KATs for those functions. The evaluator shall verify failures using malformed
known answer test data (for example, unexpected input or output values).

Test 2: The evaluator shall ensure that when an integrity check failure occurs specific to failing
KATs and failure to verify the integrity of the TSF, the TOE will prevent any further processing of
the current TSF and user data.

2.5.8.1.4. KMD

There are no KMD evaluation activities for this component.

2.6. Resource Utilization (FRU)

2.6.1. Fault Tolerance (FRU_FLT)

2.6.1.1. FRU_FLT.1 Degraded Fault Tolerance

2.6.1.1.1. TSS

The evaluator shall examine the TSS and other vendor documentation and ensure they describe the
response and state of TSF data to each type of fault injection into the TOE.

2.6.1.1.2. AGD

There are no AGD evaluation activities for this component.

2.6.1.1.3. Test

The evaluator shall process SDOs/SDEs while applying each type of identified Fault Injection into
the TSF. The evaluator will note whether the TSF response is as noted in the TSS and whether the
state can be confirmed. If the response and state are as documented, the test is a 'Pass', otherwise,
the test is a 'Fail'.

64

2.6.1.1.4. KMD

There are no KMD evaluation activities for this component.

[1] Where keys are stored encrypted or wrapped under another key then this may need to be explained in order to allow the
evaluator to confirm the consistency of the description of keys with the TOE functions.

[2] Where TRIM is used then the TSS or guidance documentation is also expected to describe how the keys are stored such that
they are not inaccessible to TRIM, (e.g. they would need not to be contained in a file less than 982 bytes which would be completely
contained in the master file table).

65

Chapter 3. Evaluation Activities for Optional
Requirements

3.1. Cryptographic Support (FCS)

3.1.1. Entropy for External IT Entities (Extended - FCS_ENT_EXT)

3.1.1.1. FCS_ENT_EXT.1 Entropy for External IT Entities

3.1.1.1.1. TSS

The evaluator shall verify that the TSS identifies one or more APIs to obtain entropy data from the
TOE.

3.1.1.1.2. AGD

There are no AGD evaluation activities for this component.

3.1.1.1.3. Test

The evaluator shall develop and execute or verify and observe the developer tooling which
requests entropy data from the TSF. The evaluator shall verify that the results from the operation
match the expected results according to the API documentation. The evaluator shall also test the
entropy data using the Entropy Analysis Report requirements to determine that the entropy is of
comparable quality (in terms of min-entropy estimate) to what is documented in the report.

3.1.1.1.4. KMD

There are no KMD evaluation activities for this component.

3.1.2. Random Bit Generation (Extended - FCS_RBG_EXT)

3.1.2.1. FCS_RBG_EXT.2 External Seeding for Random Bit Generation

3.1.2.1.1. TSS

The evaluator shall verify that this function is included as an interface to the RBG in the TSS or the
proprietary Entropy Analysis Report and that the behavior of the RBG following a call to this
interface is described. The evaluator shall also verify that the documentation of the DRBG describes
the conditions of use and possible values for the Personalization String input to the SP 800-90A
specified DRBG.

3.1.2.1.2. AGD

The evaluator shall verify that the operational guidance describes the process for supplying an
external seed to the TOE’s DRBG.

66

3.1.2.1.3. Test

The evaluator shall develop and execute or verify and observe the developer tooling which adds
data to the RBG via the Personalization String. The evaluator shall verify that the request succeeds.

3.1.2.1.4. KMD

There are no KMD evaluation activities for this component.

3.2. Protection of the TSF (FPT)

3.2.1. Internal TOE TSF Data Transfer (FPT_ITT)

3.2.1.1. FPT_ITT.1 Basic Internal TSF Data Transfer Protection

3.2.1.1.1. TSS

The evaluator shall examine the TSS to determine that it describes the TOE in terms of its
distributed components and identifies the communications that take place between these
components. The evaluator shall also examine the TSS to ensure that it describes the methods by
which each of these communications are protected.

3.2.1.1.2. AGD

If applicable, the evaluator shall confirm that the guidance documentation contains instructions for
establishing the relevant allowed communication channels between TOE components, and that it
contains recovery instructions should a connection be unintentionally broken.

3.2.1.1.3. Test

The evaluator shall perform the following tests:

Test 1: The evaluator shall ensure that all communications between distributed TOE components is
tested during the course of the evaluation, setting up the connections as described in the guidance
documentation (if applicable) and ensuring that communication is successful.

Test 2: The evaluator shall ensure, for each communication channel, that the channel data is not
sent in plaintext or that there is no interface by which it is possible to extract the channel data.

Test 3: The evaluator shall, where possible, physically interrupt communications between TOE
components. The evaluator shall ensure that when physical connectivity is restored,
communications are appropriately protected. Note that this test shall only be performed for those
interfaces where physical interruption of communications is typical operational behavior. If the
TOE consists of multiple components embedded within the same physical chassis such that
interrupting communications requires physical destruction of the device (as opposed to
disconnecting a re-connectable wire or temporarily disabling a radio), this test is not applicable.

3.2.1.1.4. KMD

There are no KMD evaluation activities for this component.

67

3.2.2. Root of Trust (Extended - FPT_PRO_EXT)

3.2.2.1. FPT_PRO_EXT.2 Data Integrity Measurements

3.2.2.1.1. TSS

The evaluator shall examine the TSS and ensure that it describes the contents and structure of any
quantifiable measures of integrity (including but not limited to cryptographic self-tests) as well as
the contents and structure of any reports generated, if any, that are used to quantify the integrity of
the data integrity measurements stored in the DSC and establish trust. The evaluator shall also
ensure that the TSS describes the order and importance of integrity measurements and records that
comprise attestation to prove the integrity of the SDOs in the DSC. In addition, the evaluator shall
ensure the TSS gives justification as to how the process in accumulating measurements is consistent
between restarts.

3.2.2.1.2. AGD

There are no AGD evaluation activities for this component.

3.2.2.1.3. Test

The tests for FDP_ITC_EXT and FMT_MSA.3 shall suffice for this component.

3.2.2.1.4. KMD

There are no KMD evaluation activities for this component.

3.2.3. Root of Trust Services (Extended - FPT_ROT_EXT)

3.2.3.1. FPT_ROT_EXT.3 Root of Trust for Reporting Mechanisms

3.2.3.1.1. TSS

The evaluator shall examine the TSS and ensure that it describes the cryptographically verifiable
identities for the Root of Trust for Reporting and how they are used, verifying that they are not
visible outside the subset of DSC scope corresponding to the Roots of Trust.

[conditional] If these cryptographically verifiable identities come in the form of resident keys or
aliases, the evaluator shall verify that the possession of such aliases or keys can only be proved
indirectly by using them to decrypt a value that has been encrypted with a corresponding public
key. The evaluator shall also verify that such keys or aliases are not used for producing digital
signatures.

In addition, the evaluator shall examine the TSS and ensure that it describes how these
cryptographically verifiable identities are unique between individual DSCs. The evaluator shall also
ensure that the TSS describes how the Root of Trust for Reporting reports on the state of the
platform and how the values reported satisfy the scope indicated by the report.

3.2.3.1.2. AGD

The evaluator shall examine the guidance documentation to confirm it describes how to enable the

68

root of trust for reporting mechanism on the TOE, how to generate a report, and how reports are
verified as genuine.

3.2.3.1.3. Test

Note that the following test may require the developer to provide access to a test platform that
provides the evaluator with tools that are not typically available to end users.

The evaluator shall perform the following tests:

Test 1: The evaluator shall enable the root of trust for reporting mechanism on the TOE and
generate a report.

Test 2: The evaluator shall confirm the generated report is valid.

Test 3: The evaluator shall modify the signature of a valid report and confirm the report is invalid.

Test 4: The evaluator shall modify the contents of a valid report and confirm the report is invalid.

3.2.3.1.4. KMD

There are no KMD evaluation activities for this component.

69

Chapter 4. Evaluation Activities for
Selection-Based Requirements

4.1. Cryptographic Support (FCS)

4.1.1. Cryptographic Key Generation (FCS_CKM)

4.1.1.1. FCS_CKM.1/AK Cryptographic Key Generation (Asymmetric Keys)

4.1.1.1.1. TSS

The evaluator shall examine the TSS to verify that it describes how the TOE generates an
asymmetric key based on the methods selected from [DSC cPP] Table 14: Supported Methods for
Asymmetric Key Generation. The evaluator shall examine the TSS to verify that it describes how the
TOE invokes the methods selected in the ST from the same table. The evaluator shall examine the
TSS to verify that it identifies the usage for each row identifier (key type, key size, and list of
standards) selected in the ST.

4.1.1.1.2. AGD

The evaluator shall verify that the AGD guidance instructs the administrator how to configure the
TOE to use the selected key types for all uses identified in the ST.

4.1.1.1.3. Test

The following tests require the developer to provide access to a test platform that provides the
evaluator with tools that are typically not found on factory products.

AK1: RSA Key Generation

The below tests are derived from The 186-4 RSA Validation System (RSA2VS), Updated 8 July 2014,
Section 6.2, from the National Institute of Standards and Technology.

The evaluator shall verify the implementation of RSA Key Generation by the TOE using the Key
Generation test. This test verifies the ability of the TSF to correctly produce values for the key
components including the public verification exponent e, the private prime factors p and q, the
public modulus n and the calculation of the private signature exponent d.

FIPS 186-4 Key Pair generation specifies 5 methods for generating the primes p and q.

These are:

1. Random Primes:

◦ Provable primes

◦ Probable primes

2. Primes with Conditions:

◦ Primes p1, p2, q1, q2, p and q shall all be provable primes.

70

◦ Primes p1, p2, q1, and q2 shall be provable primes and p and q shall be probable primes

◦ Primes p1, p2, q1, q2, p and q shall all be probable primes.

To test the key generation method for the Random Provable primes method and for all the Primes
with Conditions methods, the evaluator must seed the TSF key generation routine with sufficient
data to deterministically generate the RSA key pair.

For each key length supported, the evaluator shall have the TSF generate 25 key pairs. The
evaluator shall verify the correctness of the TSF’s implementation by comparing values generated
by the TSF with those generated by a known good implementation using the same input
parameters.

If the TOE generates Random Probable Primes then if possible, the Random Probable primes
method should also be verified against a known good implementation as described above. If
verification against a known good implementation is not possible, the evaluator shall have the TSF
generate 25 key pairs for each supported key length nlen and verify that all of the following are
true:

• n = p*q

• p and q are probably prime according to Miller-Rabin tests with error probability \<2^(-125)

• 2^16 \< e \< 2^256 and e is an odd integer

• GCD(p-1,e) = 1

• GCD(q-1,e) = 1

• |p-q|\> 2^(nlen/2 - 100)

• p \>= squareroot(2)*(2^(nlen/2 -1))

• q \>= squareroot(2)*(2^(nlen/2 -1))

• 2^(nlen/2) \< d \< LCM(p-1,q-1)

• e*d = 1 mod LCM(p-1,q-1)

AK2 & AK3: ECC Key Generation with NIST and Brainpool Curves

These tests are derived from The FIPS 186-4 Elliptic Curve Digital Signature Algorithm Validation
System (ECDSA2VS), Updated 18 Mar 2014, Section 6.

ECC Key Generation Test

For each selected curve, and for each key pair generation method as described in FIPS 186-4,
section B.4, the evaluator shall require the implementation under test to generate 10 private/public
key pairs (d, Q). The private key, d, shall be generated using a random bit generator as specified in
FCS_RBG_EXT.1. The private key, d, is used to compute the public key, Q'. The evaluator shall
confirm that 0\<d\<n (where n is the order of the group), and the computed value Q' is then
compared to the generated public/private key pairs' public key, Q, to confirm that Q is equal to Q'.

Public Key Validation (PKV) Test

For each supported curve, the evaluator shall generate 12 private/public key pairs using the key

71

generation function of a known good implementation and modify six of the public key values so
that they are incorrect, leaving six values unchanged (i.e., correct). To determine correctness, the
evaluator shall submit the 12 key pairs to the public key validation (PKV) function of the TOE and
shall confirm that the results correspond as expected to the modified and unmodified values.

AK4: DSA Key Generation using Finite-Field Cryptography (FFC)

The evaluator shall verify the implementation of the Parameters Generation and the Key
Generation for FFC by the TOE using the Parameter Generation and Key Generation test. This test
verifies the ability of the TSF to correctly produce values for the field prime p, the cryptographic
prime q (dividing p-1), the cryptographic group generator g, and the calculation of the private key x
and public key y.

The Parameter generation specifies 2 ways (or methods) to generate the cryptographic prime q and
the field prime p:

• Primes q and p shall both be provable primes

• Primes q and field prime p shall both be probable primes

and two ways to generate the cryptographic group generator g:

• Generator g constructed through a verifiable process

• Generator g constructed through an unverifiable process.

The Key generation specifies 2 ways to generate the private key x:

• len(q) bit output of RBG where 1 <=x <= q-1

• len(q) + 64 bit output of RBG, followed by a mod q-1 operation and a +1 operation, where 1<=
x<=q-1.

The security strength of the RBG must be at least that of the security offered by the FFC parameter
set.

To test the cryptographic and field prime generation method for the provable primes method or the
group generator g for a verifiable process, the evaluator must seed the TSF parameter generation
routine with sufficient data to deterministically generate the parameter set.

For each key length supported, the evaluator shall have the TSF generate 25 parameter sets and key
pairs. The evaluator shall verify the correctness of the TSF’s implementation by comparing values
generated by the TSF with those generated from a known good implementation. Verification must
also confirm

• g != 0,1

• q divides p-1

• g^q mod p = 1

• g^x mod p = y

for each FFC parameter set and key pair.

72

AK5: Curve25519 Key Generation

The evaluator shall require the implementation under test (IUT) to generate 10 private/public key
pairs. The private key shall be generated as specified in RFC 7748 using an approved random bit
generator (RBG) and shall be written in little-endian order (least significant byte first). To determine
correctness, the evaluator shall submit the generated key pairs to the public key verification (PKV)
function of a known good implementation.

Note: Assuming the PKV function of the good implementation will (using little-endian order):

• Confirm the private and public keys are 32-byte values

• Confirm the three least significant bits of the first byte of the private key are zero

• Confirm the most significant bit of the last byte is zero

• Confirm the second most significant bit of the last byte is one

• Calculate the expected public key from the private key and confirm it matches the supplied
public key

The evaluator shall generate 10 private/public key pairs using the key generation function of a
known good implementation and modify 5 of the public key values so that they are incorrect,
leaving five values unchanged (i.e. correct). The evaluator shall obtain in response a set of 10
PASS/FAIL values.

4.1.1.1.4. KMD

If the TOE uses the generated key in a key chain/hierarchy then the evaluator shall confirm that the
KMD describes:

• If AK1 is selected, then the KMD describes which methods for generating p and q are used

• How the key is used as part of the key chain/hierarchy.

4.1.1.2. FCS_CKM.1/SK Cryptographic Key Generation (Symmetric Encryption Key)

4.1.1.2.1. TSS

The evaluator shall examine the TSS to verify that it describes how the TOE obtains an SK through
direct generation as specified in FCS_RBG_EXT.1, FCS_CKM_EXT.5, or FCS_COP.1/PBKDF. The
evaluator shall review the TSS to verify that it describes how the ST invokes the functionality
described by FCS_RBG_EXT.1 and FCS_COP.1/PBKDF where applicable.

[conditional] If the symmetric key is generated by an RBG, the evaluator shall review the TSS to
determine that it describes how the functionality described by FCS_RBG_EXT.1 is invoked. The
evaluator uses the description of the RBG functionality in FCS_RBG_EXT.1 or documentation
available for the operational environment to determine that the key size being requested is greater
than or equal to the key size and mode to be used for the encryption/decryption of the data.

4.1.1.2.2. AGD

The evaluator shall verify that the AGD guidance instructs the administrator how to configure the
TOE to use the selected key types for all uses identified in the ST.

73

4.1.1.2.3. Test

For each selected key generation method, the evaluator shall configure the selected generation
capability. The evaluator shall use the description of the RBG interface to verify that the TOE
requests and receives an amount of RBG output greater than or equal to the requested key size. The
evaluator shall perform the tests as described for FCS_CKM_EXT.5 and FCS_COP.1/PBKDF.

4.1.1.2.4. KMD

The evaluator shall confirm that the KMD describes, as applicable:

• The RBG interface and how the ST uses it in symmetric key generation

• The KDF interface and how the ST uses it in symmetric key generation

• The PBKDF interface and how the ST uses it in symmetric key generation

• If the TOE uses the generated key in a key chain/hierarchy then the KMD shall describe how the
ST uses the key as part of the key chain/hierarchy.

4.1.2. Cryptographic Key Management (Extended - FCS_CKM_EXT)

4.1.2.1. FCS_CKM_EXT.5 Cryptographic Key Derivation

4.1.2.1.1. TSS

The evaluator shall check that the TSS includes a description of the key derivation functions and
shall check that this uses a key derivation algorithm and key sizes according to the specification
selected in the ST out of [DSC cPP] Table 16: Key Derivation Functions per row. The evaluator shall
confirm that the TSS supports the selected methods.

If KeyDrv5 is selected, the evaluator shall verify that the TSS shows that the total length of the
concatenated keys used as input to the KDF is greater than or equal to the length of the output from
the KDF.

[conditional] If key combination is used to form a KEK, the evaluator shall verify that the TSS
describes the method of combination and that this method is either an XOR, a KDF, or encryption.

[conditional] If a KDF is used to form a KEK, the evaluator shall ensure that the TSS includes a
description of the key derivation function and shall verify the key derivation uses an approved
derivation mode and key expansion algorithm according to SP 800-108.

[conditional] If key concatenation is used to derive KEKs (KeyDrv5), the evaluator shall ensure the
TSS includes a description of the randomness extraction step, including the following:

• The description must include how an approved untruncated MAC function is being used for the
randomness extraction step and the evaluator must verify the TSS describes that the output
length (in bits) of the MAC function is at least as large as the targeted security strength (in bits)
of the parameter set employed by the key establishment scheme (see Tables 1-3 of SP 800-56C).

• The description must include how the MAC function being used for the randomness extraction
step is related to the PRF used in the key expansion and verify the TSS description includes the
correct MAC function:

74

◦ If an HMAC-hash is used in the randomness extraction step, then the same HMAC-hash (with
the same hash function hash) is used as the PRF in the key expansion step.

◦ If an AES-CMAC (with key length 128, 192, or 256 bits) is used in the randomness extraction
step, then AES-CMAC with a 128-bit key is used as the PRF in the key expansion step.

• The description must include the lengths of the salt values being used in the randomness
extraction step and the evaluator shall verify the TSS description includes correct salt lengths:

◦ If an HMAC-hash is being used as the MAC, the salt length can be any value up to the
maximum bit length permitted for input to the hash function hash.

◦ If an AES-CMAC is being used as the MAC, the salt length shall be the same length as the AES
key (i.e. 128, 192, or 256 bits).

4.1.2.1.2. AGD

The evaluator shall verify that the AGD guidance instructs the administrator how to configure the
TOE to use the selected key types for all uses identified in the ST.

4.1.2.1.3. Test

The following tests require the developer to provide access to a test platform that provides the
evaluator with tools that are typically not found on factory products.

The evaluator shall perform one or more of the following tests to verify the correctness of the key
derivation function, depending on the specific functions that are supported:

Preconditions for testing:

• Specification of input parameter to the key derivation function to be tested

• Specification of further required input parameters

• Access to derived keys

The following table maps the data fields in the tests below to the notations used in SP 800-108 and
SP 800-56C

Data Fields Notations

SP 800-108 SP 800-56C

Pseudorandom function PRF PRF

Counter length r r

Length of output of PRF h h

Length of derived keying material L L

Length of input values I_length I_length

Pseudorandom input values I K1 (key derivation key) Z (shared secret)

Pseudorandom salt values n/a S

Randomness extraction MAC n/a MAC

75

The below tests are derived from Key Derivation using Pseudorandom Functions (SP 800-108)
Validation System (KBKDFVS), Updated 4 January 2016, Section 6.2, from the National Institute of
Standards and Technology.

KeyDrv1: Counter Mode Tests:

The evaluator shall determine the following characteristics of the key derivation function:

• One or more pseudorandom functions that are supported by the implementation (PRF).

• One or more of the values {8, 16, 24, 32} that equal the length of the binary representation of the
counter (r).

• The length (in bits) of the output of the PRF (h).

• Minimum and maximum values for the length (in bits) of the derived keying material (L). These
values can be equal if only one value of L is supported. These must be evenly divisible by h.

• Up to two values of L that are NOT evenly divisible by h.

• Location of the counter relative to fixed input data: before, after, or in the middle.

◦ Counter before fixed input data: fixed input data string length (in bytes), fixed input data
string value.

◦ Counter after fixed input data: fixed input data string length (in bytes), fixed input data
string value.

◦ Counter in the middle of fixed input data: length of data before counter (in bytes), length of
data after counter (in bytes), value of string input before counter, value of string input after
counter.

• The length (I_length) of the input values I.

For each supported combination of I_length, MAC, salt, PRF, counter location, value of r, and value
of L, the evaluator shall generate 10 test vectors that include pseudorandom input values I, and
pseudorandom salt values. If there is only one value of L that is evenly divisible by h, the evaluator
shall generate 20 test vectors for it. For each test vector, the evaluator shall supply this data to the
TOE in order to produce the keying material output.

The results from each test may either be obtained by the evaluator directly or by supplying the
inputs to the implementer and receiving the results in response. To determine correctness, the
evaluator shall compare the resulting values to those obtained by submitting the same inputs to a
known good implementation.

KeyDrv2: Feedback Mode Tests:

The evaluator shall determine the following characteristics of the key derivation function:

• One or more pseudorandom functions that are supported by the implementation (PRF).

• The length (in bits) of the output of the PRF (h).

• Minimum and maximum values for the length (in bits) of the derived keying material (L). These
values can be equal if only one value of L is supported. These must be evenly divisible by h.

• Up to two values of L that are NOT evenly divisible by h.

76

• Whether or not zero-length IVs are supported.

• Whether or not a counter is used, and if so:

◦ One or more of the values {8, 16, 24, 32} that equal the length of the binary representation of
the counter (r).

◦ Location of the counter relative to fixed input data: before, after, or in the middle.

▪ Counter before fixed input data: fixed input data string length (in bytes), fixed input data
string value.

▪ Counter after fixed input data: fixed input data string length (in bytes), fixed input data
string value.

▪ Counter in the middle of fixed input data: length of data before counter (in bytes), length
of data after counter (in bytes), value of string input before counter, value of string input
after counter.

• The length (I_length) of the input values L.

For each supported combination of I_length, MAC, salt, PRF, counter location (if a counter is used),
value of r (if a counter is used), and value of L, the evaluator shall generate 10 test vectors that
include pseudorandom input values I and pseudorandom salt values. If the KDF supports zero-
length IVs, five of these test vectors will be accompanied by pseudorandom IVs and the other five
will use zero-length IVs. If zero-length IVs are not supported, each test vector will be accompanied
by an pseudorandom IV. If there is only one value of L that is evenly divisible by h, the evaluator
shall generate 20 test vectors for it.

For each test vector, the evaluator shall supply this data to the TOE in order to produce the keying
material output. The results from each test may either be obtained by the evaluator directly or by
supplying the inputs to the implementer and receiving the results in response. To determine
correctness, the evaluator shall compare the resulting values to those obtained by submitting the
same inputs to a known good implementation.

KeyDrv3: Double Pipeline Iteration Mode Tests:

The evaluator shall determine the following characteristics of the key derivation function:

• One or more pseudorandom functions that are supported by the implementation (PRF).

• The length (in bits) of the output of the PRF (h).

• Minimum and maximum values for the length (in bits) of the derived keying material (L). These
values can be equal if only one value of L is supported. These must be evenly divisible by h.

• Up to two values of L that are NOT evenly divisible by h.

• Whether or not a counter is used, and if so:

◦ One or more of the values {8, 16, 24, 32} that equal the length of the binary representation of
the counter (r).

◦ Location of the counter relative to fixed input data: before, after, or in the middle.

▪ Counter before fixed input data: fixed input data string length (in bytes), fixed input data
string value.

77

▪ Counter after fixed input data: fixed input data string length (in bytes), fixed input data
string value.

▪ Counter in the middle of fixed input data: length of data before counter (in bytes), length
of data after counter (in bytes), value of string input before counter, value of string input
after counter.

• The length (I_length) of the input values I.

For each supported combination of I_length, MAC, salt, PRF, counter location (if a counter is used),
value of r (if a counter is used), and value of L, the evaluator shall generate 10 test vectors that
include pseudorandom input values I, and pseudorandom salt values. If there is only one value of L
that is evenly divisible by h, the evaluator shall generate 20 test vectors for it.

For each test vector, the evaluator shall supply this data to the TOE in order to produce the keying
material output. The results from each test may either be obtained by the evaluator directly or by
supplying the inputs to the implementer and receiving the results in response. To determine
correctness, the evaluator shall compare the resulting values to those obtained by submitting the
same inputs to a known good implementation.

KeyDrv4: Intermediate Keys Method

If the selected algorithm is a hash then the testing of the hash primitive is the only required
Evaluation Activity. If the selected algorithm is XOR then no separate primitive testing is necessary.

KeyDrv5: Concatenated Keys Method

The evaluator should confirm that the combined length of the concatenated keys should be at least
as long as the keysize of the selected methods. There are no other tests other than for the methods
selected for this row performed for KeyDrv1, KeyDrv2, and KeyDrv3.

KeyDrv6: Two Keys Method

The evaluator should confirm that the combined length of the two keys should be at least as long as
the keysize of the selected methods. There are no other tests other than for the methods selected for
this row from FCS_COP.1/SKC.

KeyDrv7: Shared Secret, Salt, Output Length, Fixed Information Method

For each supported selection of PRF, length of shared secret (Z) [selection: 128, 256] bits, length of
salt (S) [selection: length of input block of PRF, one-half length of input block of PRF, 0] bits, output
length (L) [selection: 128, 256] bits, and length of fixed information (FixedInfo) [selection: length of
on input block of PRF, one-half length of input block of PRF, 0] bits, the evaluator shall generate 10
test vectors that include pseudorandom input values for Z, salt values (for non-zero lengths,
otherwise, omit) and fixed information (for non-zero lengths, otherwise, omit).

For each test vector, the evaluator shall supply this data to the TOE in order to produce the keying
material output. The results from each test may either be obtained by the evaluator directly or by
supplying the inputs to the implementer and receiving the results in response. To determine
correctness, the evaluator shall compare the resulting values to those obtained by submitting the
same inputs to a known good implementation.

78

KeyDrv8: Shared Secret, Salt, IV, Output Length, Fixed Information Method

For each supported selection of PRF, length of shared secret (Z), length of salt, length of
initialization vector (IV), output length (L), and length of fixed information (FixedInfo), the
evaluator shall generate 10 test vectors that include pseudorandom input values for Z, salt values
(for non-zero lengths, otherwise, omit), IV (for non-zero lengths, otherwise, use a vector of length
equal to length of input block of PRF and fill with zeros), and fixed information (for non-zero
lengths, otherwise, omit).

For each test vector, the evaluator shall supply this data to the TOE in order to produce the keying
material output. The results from each test may either be obtained by the evaluator directly or by
supplying the inputs to the implementer and receiving the results in response. To determine
correctness, the evaluator shall compare the resulting values to those obtained by submitting the
same inputs to a known good implementation.

4.1.2.1.4. KMD

The evaluator shall examine the KMD to ensure that:

• The KMD describes the complete key derivation chain and the description must be consistent
with the description in the TSS. For all key derivations the TOE must use a method as described
in the [DSC cPP] table. There should be no uncertainty about how a key is derived from another
in the chain.

• The length of the key derivation key is defined by the PRF. The evaluator should check whether
the key derivation key length is consistent with the length provided by the selected PRF.

• If a key is used as an input to several KDFs, each invocation must use a distinct context string. If
the output of a KDF execution is used for multiple cryptographic keys, those keys must be
disjoint segments of the output.

4.1.3. Cryptographic Operation (FCS_COP)

4.1.3.1. FCS_COP.1/PBKDF Cryptographic Operation (Password-Based Key Derivation
Functions)

4.1.3.1.1. TSS

The evaluator shall review the TSS to verify that it contains a description of the PBKDF. The
evaluator shall also confirm the TSF supports the selected hash function itself. The evaluator shall
confirm that the TSS contains a description of how the TOE ensures that the output of the PBKDF is
at least the same length as that specified in FCS_CKM.1/SK and for the KeyDrv4, KeyDrv5, or
KeyDrv6 in FCS_CKM_EXT.5.

If the ST claims iterations less than 1000 iterations, the evaluator shall verify the TSS contains a
description of the workload function used to claim equivalence to at least 1000 iterations of PBKDF.

If the TSF performs additional conditioning, whitening, or manipulation of the password or
passphrase before applying the PBKDF, or to the output of the PBKDF, the evaluator shall ensure
that the TSS describes the actions and provides assurance that the TSF does not negatively impact
the entropy of the PBKDF output.

79

If any manipulation of the key is performed in forming the submask that will be used to form the
KEK, that process shall be described in the TSS.

4.1.3.1.2. AGD

There are no AGD evaluation activities for this component.

4.1.3.1.3. Test

No explicit testing of the formation of the submask from the input password is required.

For the NIST SP 800-132-based conditioning of the passphrase, the required evaluation activities
will be performed when doing the evaluation activities for the appropriate requirements
(FCS_COP.1/HMAC).

The evaluator shall verify that the iteration count for PBKDFs performed by the TOE comply with
NIST SP 800-132 by ensuring that the TSS contains a description of the estimated time required to
derive key material from passwords and how the TOE increases the computation time for
password-based key derivation (including but not limited to increasing the iteration count).

4.1.3.1.4. KMD

If the ST claims less than 1000 PBKDF iterations, the evaluator shall verify the KMD contains a
description of the process for increasing the workload. The description shall provide a flow
diagram of the operations involved including the keys used in the operations. The evaluator shall
also confirm that the TSF supports any algorithms in use for this sequence of operations.

The KMD shall include an equivalency argument comparing the workload (time to completion)
using at least 1000 PBKDF iterations vs the workload of the alternative process.

4.2. User Data Protection (FDP)

4.2.1. Data Authentication (FDP_DAU)

4.2.1.1. FDP_DAU.1/Prove Basic Data Authentication (for Use with the Prove Service)

4.2.1.1.1. TSS

The evaluator shall examine the TSS and ensure it describes the data that is validity-stamped and
where applicable, authenticity-stamped to the level of understanding the DSC has about the data or
its origin (from the user providing it to the Prove service). The evaluator shall also ensure that the
TSS describes how the evidence of validity or authenticity is generated, including the subjects who
perform the verification, and the form the validity or authenticity stamp is represented (i.e. a
cryptographic signature, MAC using a symmetric key shared with the receiver, etc.).

4.2.1.1.2. AGD

The evaluator shall ensure that the operational guidance describes how to configure validity-
stamping on the TOE.

80

4.2.1.1.3. Test

The following testing may require the TOE developer to make a test harness available to the
evaluator that allows the evaluator to interface directly with the DSC. Tests may also require the
use of an automated script provided by either the vendor or the evaluator. If a test script is made
available, the evaluator shall verify that it includes sufficient detail to validate the claims made in
the TSS.

Test 1: Demonstrate the TOE can validity-stamp data.

For each configurable option to validity-stamp data, the evaluator shall configure the TOE to create
a data object or import a data object which has not-yet been validity-stamped. The evaluator shall
then instruct the TOE to validity-stamp this data object. The evaluator shall then export each data
object and demonstrate it has been validity-stamped in accordance with the configured options.

Test 2: Demonstrate the TOE can disable validity-stamping of data objects.

The evaluator shall disable, or ensure validity-stamping has been disabled on the TOE.

The evaluator shall create a data object on the TOE or import an already-created data object which
has not been validity-signed.

The evaluator shall export that data object and verify it has not been validity-stamped.

4.2.1.1.4. KMD

There are no KMD evaluation activities for this component.

4.2.2. Factory Reset (Extended - FDP_FRS_EXT)

4.2.2.1. FDP_FRS_EXT.2 Factory Reset Behavior

4.2.2.1.1. TSS

The evaluator shall examine the TSS to determine the pre-installed SDOs that are reverted to their
factory settings when a factory reset occurs, what the factory settings are for those SDOs, and that
the TSS states that all non-permanent SDOs are destroyed.

4.2.2.1.2. AGD

The evaluator shall examine the operational guidance and verify that it identifies the pre-installed
SDOs that are reverted to their initial values when a factory reset has been performed.

4.2.2.1.3. Test

The evaluator shall perform the following test:

1. The evaluator shall use each supported role to create or import an SDE or SDO that has known
data.

2. The evaluator shall then verify that the created SDE/SDO resides either within the DSC, or under
the control of the DSC.

81

3. The evaluator shall perform some action for each created or imported SDE/SDO in step 1 that
demonstrates that the SDE/SDO has been set to the indicated value.

4. For each pre-installed SDO that is identified in FDP_FRS_EXT.2.1, the evaluator shall perform
some action to verify what the current value of that SDO is.

5. The evaluator shall initiate a factory reset.

6. For each operation in step 3, the evaluator shall re-attempt the operation and verify that it no
longer completes successfully because the SDE/SDO data has been erased.

7. For each pre-installed SDO that is identified in step 4, the evaluator shall re-attempt the
operation and verify that the SDOs have been set to their factory default values.

4.2.2.1.4. KMD

There are no KMD evaluation activities for this component.

4.2.3. Mutable/Immutable Firmware (Extended - FDP_MFW_EXT)

4.2.3.1. FDP_MFW_EXT.2 Basic Firmware Integrity

4.2.3.1.1. TSS

The evaluator shall verify that the TSS describes which critical memory is measured for these
integrity values and how the measurement is performed (including which TOE software measures
the memory integrity values, how that software accesses the critical memory, and which algorithms
are used).

4.2.3.1.2. AGD

If the integrity values are provided to the administrator, the evaluator shall verify that the AGD
guidance contains instructions for retrieving these values and information for interpreting them.
For example, if multiple measurements are taken, what those measurements are and how changes
to those values relate to changes in the device state.

4.2.3.1.3. Test

Note that the following test may require the developer to provide access to a test platform that
provides the evaluator with tools that are not typically available to end users.

The evaluator shall repeat the following test for each measurement:

The evaluator shall boot the TOE in an approved state and record the measurement taken. The
evaluator shall modify the critical memory or value that is measured. The evaluator shall reboot
the TOE and verify that the measurement changed.

4.2.3.1.4. KMD

There are no KMD evaluation activities for this component.

82

4.2.3.2. FDP_MFW_EXT.3 Firmware Authentication with Identity of Guarantor

4.2.3.2.1. TSS

The evaluator shall examine the TSS to ensure it describes the methods and identities used to verify
integrity and authenticity of the firmware. The TSS shall identify the Guarantor and how to verify
its identity.

4.2.3.2.2. AGD

There are no guidance activities for this component.

4.2.3.2.3. Test

The TOE guarantees the authenticity of the firmware using the identity of the Guarantor. This
prevents impersonating a Guarantor when sending firmware to a device or modifying the
firmware in transit.

Test 1: Verify Authentic Firmware

The evaluator shall trigger the TOE to load and evaluate the authenticity of authentic firmware
according the methods described in the TSS. The evaluator shall ensure that the TOE provides a
clear indication of the success of the evaluation to consider the test a 'Pass', otherwise, the test is a
'Fail'.

Test 2: Verify Unauthentic Firmware

The evaluator shall deliberately modify authentic firmware.

The evaluator shall trigger the TOE to load and evaluate the authenticity of the deliberately
modified firmware according the methods described in the TSS. The evaluator shall ensure that the
TOE provides a clear indication of the failure of the evaluation to consider the test a 'Pass',
otherwise, the test is a 'Fail'.

4.2.3.2.4. KMD

There are no KMD evaluation activities for this component.

4.3. Identification and Authentication (FIA)

4.3.1. Authorization Failure Handling (Extended - FIA_AFL_EXT)

4.3.1.1. FIA_AFL_EXT.2 Authorization Failure Response

4.3.1.1.1. TSS

The evaluator shall examine the TSS to determine that it describes the method by which access to
an SDO is restored following a lockout that results from excessive authentication failures.

83

4.3.1.1.2. AGD

The evaluator shall examine the guidance to ensure that it describes the method by which an
administrator unlocks access to an SDO following a lockout that results from excessive
authentication failures.

4.3.1.1.3. Test

The evaluator shall intentionally fail authentication attempts to access an SDO until they are locked
out from interacting with it. The evaluator shall then follow the operational guidance to unlock
access to the SDO and verify that it was successful by subsequently using valid credentials to access
the SDO.

4.3.1.1.4. KMD

There are no KMD evaluation activities for this component.

4.4. Protection of the TSF (FPT)

4.4.1. Fail Secure (FPT_FLS)

4.4.1.1. FPT_FLS.1/FW Failure with Preservation of Secure State (Firmware)

4.4.1.1.1. TSS

The evaluator shall examine the TSS to verify that it describes the actions taken when the TOE
experiences each of the stated failures and how these actions ensure the DSC preserves a secure
state.

The evaluator shall verify that the TSS describes the state of the DSC when the firmware validity
checks fail, including the various failure modes assumed.

4.4.1.1.2. AGD

For each failure state, the evaluator shall examine the operational guidance to verify that it
describes what actions should be taken to attempt to resolve the failure state.

4.4.1.1.3. Test

Note that this test requires firmware builds that are deliberately invalidated to cause authenticity,
integrity, and rollback violation failures.

The evaluator shall examine the TOE’s behavior when it is loaded with a firmware build that causes
a firmware failure. The evaluator shall ensure that when the failure occurs, the TOE prevents
further processing of TSF and user data and performs any actions consistent with maintaining a
secure state as described in the TSS.

The evaluator shall repeat this test as necessary to observe each of the specific firmware failures
identified in the SFR.

84

4.4.1.1.4. KMD

There are no KMD evaluation activities for this component.

4.4.2. Replay Detection (FPT_RPL)

4.4.2.1. FPT_RPL.1/Rollback Replay Detection (Rollback)

4.4.2.1.1. TSS

The evaluator shall examine the TSS and other vendor documentation and ensure that they
describe the methods used to guarantee the validity of firmware identifiers and prevents the TSF
from executing older instances than that which is currently authorized.

4.4.2.1.2. AGD

There are no AGD evaluation activities for this component.

4.4.2.1.3. Test

The evaluator shall repeat the following tests to cover all allowed firmware verification
mechanisms as described in the TSS. For example, if the firmware verification mechanism replaces
an entire partition or subset of the DSC scope containing many separate code files, the evaluator
does not need to repeat the test for each individual file.

Test 1: The evaluator shall attempt to execute an earlier instance or build of the software (as
determined by the vendor). The evaluator shall verify that this attempt fails by checking the version
identifiers or cryptographic hashes of the firmware against those previously recorded and checking
that the values do not correspond to an unauthorized build.

Test 2: The evaluator shall attempt to execute a current or later instance and shall verify that the
firmware execution succeeds.

4.4.2.1.4. KMD

There are no KMD evaluation activities for this component.

4.5. Trusted Path/Channels (FTP)

4.5.1. CCM Protocol (Extended - FTP_CCMP_EXT)

4.5.1.1. FTP_CCMP_EXT.1 CCM Protocol

4.5.1.1.1. TSS

The evaluator shall verify that the TSS includes a description of the TOE’s expected responses to
CCMP authentication failures and malformed or invalid CCMP data units.

4.5.1.1.2. AGD

There are no AGD evaluation activities for this component.

85

4.5.1.1.3. Test

The evaluator shall perform the following tests:

Test 1: The evaluator shall attempt to establish a CCMP connection to the TOE from an external
entity, observe the return traffic with a network traffic analyzer, and verify that the connection
succeeds and that the traffic is identified as properly constructed CCMP data units.

Test 2: The evaluator shall attempt to establish a CCMP connection to the TOE using five messages
with incorrect or invalid authentication factors and verify that an authentication failure or error
status is returned.

Test 3: The evaluator shall attempt to establish a CCMP connection to the TOE using five different
messages that are malformed or invalid due to noncompliance with the CCMP standard and
observe that all connection attempts are unsuccessful.

Test 4: The evaluator shall establish a valid CCMP connection to the TOE. Once this has been
established, the evaluator shall send ten different messages that are malformed or invalid due to
noncompliance with the CCMP standard and observe that each of these messages are rejected.

4.5.1.1.4. KMD

There are no KMD evaluation activities for this component.

4.5.2. GCM Protocol (Extended - FTP_GCMP_EXT)

4.5.2.1. FTP_GCMP_EXT.1 GCM Protocol

4.5.2.1.1. TSS

The evaluator shall verify that the TSS includes a description of the TOE’s expected responses to
GCMP authentication failures and malformed or invalid GCMP data units.

4.5.2.1.2. AGD

There are no AGD evaluation activities for this component.

4.5.2.1.3. Test

The evaluator shall perform the following tests:

Test 1: The evaluator shall attempt to establish a GCMP connection to the TOE from an external
entity, observe the return traffic with a network traffic analyzer, and verify that the connection
succeeds and that the traffic is identified as properly constructed GCMP data units.

Test 2: The evaluator shall attempt to establish a GCMP connection to the TOE using five messages
with incorrect or invalid authentication factors and verify that an authentication failure or error
status is returned.

Test 3: The evaluator shall attempt to establish a GCMP connection to the TOE using five different
messages that are malformed or invalid due to noncompliance with the GCMP standard and
observe that all connection attempts are unsuccessful.

86

Test 4: The evaluator shall establish a valid GCMP connection to the TOE. Once this has been
established, the evaluator shall send ten different messages that are malformed or invalid due to
noncompliance with the GCMP standard and observe that each of these messages are rejected.

4.5.2.1.4. KMD

There are no KMD evaluation activities for this component.

4.5.3. Inter-TSF Trusted Channel (Extended - FTP_ITC_EXT)

4.5.3.1. FTP_ITC_EXT.1 Cryptographically Protected Communications Channels

4.5.3.1.1. TSS

The evaluator shall review the TSS to determine that it lists all trusted channels the TOE uses for
remote communications, including both the external entities and remote users used for the channel
as well as the protocol that is used for each.

4.5.3.1.2. AGD

There are no AGD evaluation activities for this component.

4.5.3.1.3. Test

The evaluator shall configure the TOE to communicate with each external IT entity or type of
remote user identified in the TSS. The evaluator shall monitor network traffic while the TSF
performs communication with each of these destinations. The evaluator shall ensure that for each
session a trusted channel was established in conformance with the protocols identified in the
selection.

4.5.3.1.4. KMD

There are no KMD evaluation activities for this component.

4.5.4. Encrypted Data Communications (Extended - FTP_ITE_EXT)

4.5.4.1. FTP_ITE_EXT.1 Encrypted Data Communications

4.5.4.1.1. TSS

The evaluator shall review the TSS to determine that it lists all encryption mechanisms the TOE
uses for protected external communications, along with the types of communications protected
using each mechanism.

4.5.4.1.2. AGD

There are no AGD evaluation activities for this component.

4.5.4.1.3. Test

The evaluator shall configure the TOE to communicate with each external entity identified in the

87

TSS. The evaluator shall initiate a transaction that will result in data being transferred to the TOE
through the mechanism and other data returned to the initiating entity through the mechanism.
The evaluator must verify that the data returned to the entity was encrypted using the documented
mechanism when received.

4.5.4.1.4. 4KMD

There are no KMD evaluation activities for this component.

4.5.5. Physically Protected Channel (Extended - FTP_ITP_EXT)

4.5.5.1. FTP_ITP_EXT.1 Physically Protected Channel

4.5.5.1.1. TSS

The evaluator shall review the TSS to determine that it lists all mechanisms the TOE uses for
physically protected external communications, along with the types of communications protected
using each mechanism.

4.5.5.1.2. AGD

There are no AGD evaluation activities for this component.

4.5.5.1.3. Test

There are no test activities for this component.

4.5.5.1.4. KMD

There are no KMD evaluation activities for this component.

88

Chapter 5. Evaluation Activities for SARs
The sections below specify EAs for the Security Assurance Requirements (SARs) included in the
related cPPs. The EAs in Section 2, Evaluation Activities for SFRs, Section 3, Evaluation Activities for
Optional Requirements, and Section 4, Evaluation Activities for Selection-Based Requirements are an
interpretation of the more general CEM assurance requirements as they apply to the specific
technology area of the TOE.

In this section, each SAR that is contained in the [DSC cPP] is listed, and the EAs that are not
associated with an SFR are captured here, or a reference is made to the CEM, and the evaluator is
expected to perform the CEM work units.

5.1. ASE: Security Target Evaluation
When evaluating a Security Target, the evaluator performs the work units as presented in the CEM.
In addition, the evaluator ensures the content of the TSS in the ST satisfies the EAs specified in
Section 2 as well as the EAs for the optional and selection-based SFRs claimed by the ST and
specified in Section 3 and Section 4.

5.2. ADV: Development

5.2.1. Basic Functional Specification (ADV_FSP.1)

The EAs for this assurance component focus on understanding the interfaces (e.g., application
programing interfaces, command line interfaces, graphical user interfaces, network interfaces)
described in the AGD documentation, and possibly identified in the TOE Summary Specification
(TSS) and Key Management Documentation (KMD) in response to the SFRs. Specific evaluator
actions to be performed against this documentation are identified (where relevant) for each SFR in
Section 2, Evaluation Activities for SFRs, and in EAs for AGD, ATE and AVA SARs in other parts of
Section 5.

The EAs presented in this section address the CEM work units ADV_FSP.1-1, ADV_FSP.1-2,
ADV_FSP.1-3, and ADV_FSP.1-5.

The EAs are reworded for clarity and interpret the CEM work units such that they will result in
more objective and repeatable actions by the evaluator. The EAs in this SD are intended to ensure
the evaluators are consistently performing equivalent actions.

The documents to be examined for this assurance component in an evaluation are therefore the
Security Target, AGD documentation, and any required supplementary information required by the
[DSC cPP]: no additional "functional specification" documentation is necessary to satisfy the EAs.
The interfaces that need to be evaluated are also identified by reference to the EAs listed for each
SFR, and are expected to be identified in the context of the Security Target, AGD documentation,
and any required supplementary information defined in the [DSC cPP] rather than as a separate list
specifically for the purposes of CC evaluation. The direct identification of documentation
requirements and their assessment as part of the EAs for each SFR also means that the tracing
required in ADV_FSP.1.2D (work units ADV_FSP.1-4, ADV_FSP.1-6 and ADV_FSP.1-7) is treated as

89

implicit and no separate mapping information is required for this element.

Table 4. Mapping of ADV_FSP.1 CEM Work Units to Evaluation Activities

CEM ADV_FSP.1 Work Units Evaluation Activities

ADV_FSP.1-1 The evaluator shall examine the
functional specification to determine that it
states the purpose of each SFR-supporting and
SFR-enforcing TSFI.

Section 5.2.1.1, “Evaluation Activity”: The
evaluator shall examine the interface
documentation to ensure it describes the purpose
and method of use for each TSFI that is identified
as being security relevant.

ADV_FSP.1-2 The evaluator shall examine the
functional specification to determine that the
method of use for each SFR-supporting and SFR-
enforcing TSFI is given.

Section 5.2.1.2, “Evaluation Activity”: The
evaluator shall check the interface documentation
to ensure it identifies and describes the
parameters for each TSFI that is identified as
being security relevant.

ADV_FSP.1-3 The evaluator shall examine the
presentation of the TSFI to determine that it
identifies all parameters associated with each
SFR-enforcing and SFR supporting TSFI.

Section 5.2.1.3, “Evaluation Activity”: The
evaluator shall examine the interface
documentation to develop a mapping of the
interfaces to SFRs.

ADV_FSP.1-4 The evaluator shall examine the
rationale provided by the developer for the
implicit categorisation of interfaces as SFR-non-
interfering to determine that it is accurate.

Paragraph 609 from the CEM: "In the case where
the developer has provided adequate
documentation to perform the analysis called
for by the rest of the work units for this
component without explicitly identifying SFR-
enforcing and SFR-supporting interfaces, this
work unit should be considered satisfied."Since
the rest of the ADV_FSP.1 work units will have
been satisfied upon completion of the EAs, it
follows that this work unit is satisfied as well.

ADV_FSP.1-5 The evaluator shall check that the
tracing links the SFRs to the corresponding
TSFIs.

Section 5.2.1.4, “Evaluation Activity for
Specifying DSC Interface for Use in Composite
Evaluations”: The evaluator shall examine the
interface documentation to develop a mapping of
the interfaces to SFRs.

ADV_FSP.1-6 The evaluator shall examine the
functional specification to determine that it is a
complete instantiation of the SFRs.

EAs that are associated with the SFRs in Section
2, and, if applicable, Section 3 and Section 4, are
performed to ensure that all the SFRs where the
security functionality is externally visible (i.e., at
the TSFI) are covered. Therefore, the intent of
this work unit is covered.

90

CEM ADV_FSP.1 Work Units Evaluation Activities

ADV_FSP.1-7 The evaluator shall examine the
functional specification to determine that it is an
accurate instantiation of the SFRs.

EAs that are associated with the SFRs in Section
2, and, if applicable, Section 3 and Section 4, are
performed to ensure that all the SFRs where the
security functionality is externally visible (i.e., at
the TSFI) are addressed, and that the description
of the interfaces is accurate with respect to the
specification captured in the SFRs. Therefore,
the intent of this work unit is covered.

5.2.1.1. Evaluation Activity

The evaluator shall examine the interface documentation to ensure it describes the purpose and
method of use for each TSFI that is identified as being security relevant.

In this context, TSFI are deemed security relevant if they are used by the administrator to configure
the TOE, or if they are used by the TSF to send or receive security-relevant data or to invoke an API
or other service that supports the execution of a security function. The intent is that these
interfaces will be adequately tested, and having an understanding of how these interfaces are used
in the TOE is necessary to ensure proper test coverage is applied.

The set of TSFI that are provided as evaluation evidence are contained in the operational guidance.

5.2.1.2. Evaluation Activity

The evaluator shall check the interface documentation to ensure it identifies and describes the
parameters for each TSFI that is identified as being security relevant.

5.2.1.3. Evaluation Activity

The evaluator shall examine the interface documentation to develop a mapping of the interfaces to
SFRs.

The evaluator uses the provided documentation and first identifies, and then examines a
representative set of interfaces to perform the EAs presented in Section 2, Evaluation Activities for
SFRs, including the EAs associated with testing of the interfaces.

It should be noted that there may be some SFRs that do not have an interface that is explicitly
"mapped" to invoke the desired functionality. For example, generating a random bit string,
destroying a cryptographic key that is no longer needed, or the TSF failing to a secure state, are
capabilities that may be specified in SFRs, but are not invoked by an interface and are performed
entirely within the TOE boundary.

However, if the evaluator is unable to perform some other required EA because there is insufficient
design and interface information, then the evaluator is entitled to conclude that an adequate
functional specification has not been provided, and hence that the verdict for the ADV_FSP.1
assurance component is a 'fail'.

91

5.2.1.4. Evaluation Activity for Specifying DSC Interface for Use in Composite Evaluations

Table 5 below lists all potentially exportable DSC services supported by this [DSC cPP] along with
the SFRs that implement the services. The ST author should include this table in the ST after
removing the rows for services not supported by the DSC or whose interfaces are not available to
dependent components. SFRs surrounded in brackets ("[SFR]") are optional or selection-based. All
the SFRs listed in the resulting table must be selected in the ST.

Table 5. Mapping between DSC Exportable Services and SFRs

Service DSC SFR

Asymmetric-Key Generation [FCS_CKM.1/AKG]

Symmetric-Key Generation [FCS_CKM.1/SKG]

Private-Key Cryptography FCS_CKM.2

Public-Key Cryptography FCS_CKM.2

Symmetric-Key Cryptography
FCS_COP.1/SKC, [FTP_CCMP_EXT.1,
FTP_GCMP_EXT.1]

Key Creation FCS_CKM.1

Random-Bit Generation FCS_RBG_EXT.1, [FCS_ENT_EXT.1]

RNG Seeding FCS_RBG_EXT.1, [FCS_RBG_EXT.2]

Key Wrapping FCS_COP.1/KeyEnc

Cryptographic Hashing FCS_COP.1/Hash

Cryptographic Keyed Hash FCS_COP.1/HMAC

Password Hashing (PBKDF) [FCS_COP.1/PBKDF]

Signature Generation FCS_COP.1/SigGen

Signature Verification FCS_COP.1/SigVer

Factory Reset FDP_FRS_EXT.1, [FDP_FRS_EXT.2]

Destroy Persistent Secrets FCS_CKM.4

Set Root Encryption Key (mutable H/W) FCS_STG_EXT.1

Store Persistent Secrets FCS_STG_EXT.1-3

Wrap Transient Secrets FCS_STG_EXT.1-3

Get Time Stamp FPT_STM.1

Cryptographic Self-Tests FPT_TST.1

The ST must include a description of the interface for each exported service. Interface descriptions
must include the purpose of the interface, method of use, parameters, and parameter descriptions.
The descriptions must provide sufficient detail to allow the ST author of a composite evaluation to
align the DSC interfaces with the dependent component SFRs that they satisfy. Multiple DSC
operations may be combined to satisfy dependent component SFRs.

It is not required that a DSC expose interfaces to all the Table 5 services to a dependent component.

92

Nor is a DSC limited to providing only the above services. But all such services that are provided
must be documented and the interfaces described.

5.3. AGD: Guidance Documents
It is not necessary for a TOE to provide separate documentation to meet the individual
requirements of AGD_OPE and AGD_PRE. Although the EAs in this section are described under the
traditionally separate AGD families, the mapping between the documentation provided by the
developer and the AGD_OPE and AGD_PRE requirements may be many-to-many, as long as all
requirements are met in documentation that is delivered to administrators and users (as
appropriate) as part of the TOE.

Note that a DSC is not a direct-to-consumer product and is more typically integrated with a larger
system that is distributed to end customers. The guidance documentation may reflect this. For
example, information on how to administer the TOE may not necessarily be user-facing
instructions; rather, they may be presented as APIs or other information that could be used by a
third-party integrator to develop user-facing functions that interface with the DSC to perform the
required behavior.

Note that unique aspects of the DSC’s design or architecture may mean that some of these EAs
below are not applicable to the TOE because they may be enforced by default. If a given EA is not
applicable, the evaluator shall ensure that adequate rationale is provided to justify the lack of
applicability.

5.3.1. Operational User Guidance (AGD_OPE.1)

The evaluator performs the CEM work units associated with the AGD_OPE.1 SAR. Specific
requirements and EAs on the guidance documentation are identified (where relevant) in the
individual EAs for each SFR.

In addition, the evaluator performs the EAs specified below.

5.3.1.1. Evaluation Activity

The evaluator shall ensure the Operational guidance documentation is distributed to administrators
and users (as appropriate) as part of the TOE, so that there is a reasonable guarantee that
administrators and users are aware of the existence and role of the documentation in establishing and
maintaining the evaluated configuration.

5.3.1.2. Evaluation Activity

The evaluator shall ensure that the Operational guidance is provided for every Operational
Environment that the product supports as claimed in the Security Target and shall adequately address
all platforms claimed for the TOE in the Security Target.

5.3.1.3. Evaluation Activity

The evaluator shall ensure that the Operational guidance contains instructions for configuring any
cryptographic engine associated with the evaluated configuration of the TOE. It shall provide a

93

warning to the administrator that use of other cryptographic engines was not evaluated nor tested
during the CC evaluation of the TOE.

5.3.1.4. Evaluation Activity

The evaluator shall ensure the Operational guidance makes it clear to an administrator which
security functionality and interfaces have been assessed and tested by the EAs.

5.3.2. Preparative Procedures (AGD_PRE.1)

The evaluator performs the CEM work units associated with the AGD_PRE.1 SAR. Specific
requirements and EAs on the preparative documentation are identified (and where relevant are
captured in the Guidance Documentation portions of the EAs) in the individual EAs for each SFR.

Preparative procedures are distributed to administrators and users (as appropriate) as part of the
TOE, so that there is a reasonable guarantee that administrators and users are aware of the
existence and role of the documentation in establishing and maintaining the evaluated
configuration.

In addition, the evaluator performs the EAs specified below. Note that unique aspects of the DSC’s
design or architecture may mean that some of these EAs are not applicable to the TOE because they
may be enforced by default. If a given EA is not applicable, the evaluator shall ensure that adequate
rationale is provided to justify the lack of applicability.

5.3.2.1. Evaluation Activity

The evaluator shall examine the preparative procedures to ensure they include a description of how
the administrator verifies that the operational environment can fulfil its role to support the security
functionality (including the requirements of the Security Objectives for the Operational Environment
specified in the Security Target).

The documentation should be in an informal style and should be written with sufficient detail and
explanation that they can be understood and used by the target audience (which will typically
include product developers/engineers that are responsible for integrating the DSC into a larger
system).

5.3.2.2. Evaluation Activity

The evaluator shall examine the preparative procedures to ensure they are provided for every
Operational Environment that the product supports as claimed in the Security Target and shall
adequately address all platforms claimed for the TOE in the Security Target.

5.3.2.3. Evaluation Activity

The evaluator shall examine the preparative procedures to ensure they include instructions to
successfully install the TSF in each Operational Environment.

5.3.2.4. Evaluation Activity

The evaluator shall examine the preparative procedures to ensure they include instructions to manage

94

the security of the TSF as a product and as a component of the larger operational environment.

5.4. ALC: Life-cycle Support

5.4.1. Labelling of the TOE (ALC_CMC.1)

When evaluating that the TOE has been provided and is labelled with a unique reference, the
evaluator performs the work units as presented in the CEM.

5.4.2. TOE CM coverage (ALC_CMS.1)

When evaluating the developer’s coverage of the TOE in their CM system, the evaluator performs
the work units as presented in the CEM.

5.5. ATE: Tests

5.5.1. Independent Testing - Conformance (ATE_IND.1)

The focus of the testing is to confirm that the requirements specified in the SFRs are being met.
Testing is performed to confirm the functionality, as described in the AGD (operational guidance),
TSS and KMD (as specified for the functional specification), is accurate.

The evaluator performs the CEM work units associated with the ATE_IND.1 SAR. Specific testing
requirements and EAs are captured for each SFR in Section 2, Evaluation Activities for SFRs, Section
3, Evaluation Activities for Optional Requirements and Section 4, Evaluation Activities for Selection-
Based Requirements.

5.6. AVA: Vulnerability Assessment

5.6.1. Vulnerability Survey (AVA_VAN.1)

While vulnerability analysis is inherently a subjective activity, a minimum level of analysis can be
defined and some measure of objectivity and repeatability (or at least comparability) can be
imposed on the vulnerability analysis process. In order to achieve such objectivity and repeatability
it is important that the evaluator follows a set of well-defined activities, and documents their
findings so others can follow their arguments and come to the same conclusions as the evaluator.
While this does not guarantee that different evaluation facilities will identify exactly the same type
of vulnerabilities or come to exactly the same conclusions, the approach defines the minimum level
of analysis and the scope of that analysis, and provides Certification Bodies a measure of assurance
that the minimum level of analysis is being performed by the evaluation facilities.

In order to meet these goals some refinement of the AVA_VAN.1 CEM work units is needed. As Table
6, “Mapping of AVA_VAN.1 CEM Work Units to Evaluation Activitiess” indicates, for each work unit
in AVA_VAN.1, whether the CEM work unit is to be performed as written, or if it has been clarified
by an Evaluation Activity. If clarification has been provided, a reference to this clarification is
provided in the table.

95

Table 6. Mapping of AVA_VAN.1 CEM Work Units to Evaluation Activitiess

CEM AVA_VAN.1 Work Units Evaluation Activities

AVA_VAN.1-1 The evaluator shall examine the
TOE to determine that the test configuration is
consistent with the configuration under
evaluation as specified in the ST.

The evaluator shall perform the CEM activity as
specified.

AVA_VAN.1-2 The evaluator shall examine the
TOE to determine that it has been installed
properly and is in a known state

The evaluator shall perform the CEM activity as
specified.

AVA_VAN.1-3 The evaluator shall examine
sources of information publicly available to
identify potential vulnerabilities in the TOE.

Replace CEM work unit with activities outlined
in Section A.1, “Sources of vulnerability
information”

AVA_VAN.1-4 The evaluator shall record in the
ETR the identified potential vulnerabilities that
are candidates for testing and applicable to the
TOE in its operational environment.

Replace the CEM work unit with the analysis
activities on the list of potential vulnerabilities
in Section A.1, “Sources of vulnerability
information”, and documentation as specified in
Section A.3, “Reporting”.

AVA_VAN.1-5 The evaluator shall devise
penetration tests, based on the independent
search for potential vulnerabilities.

Replace the CEM work unit with the activities
specified in Section A.2, “Process for Evaluator
Vulnerability Analysis”.

96

CEM AVA_VAN.1 Work Units Evaluation Activities

AVA_VAN.1-6 The evaluator shall produce
penetration test documentation for the tests
based on the list of potential vulnerabilities in
sufficient detail to enable the tests to be
repeatable. The test documentation shall
include:

a. identification of the potential vulnerability
the TOE is being tested for;

b. instructions to connect and setup all
required test equipment as required to
conduct the penetration test;

c. instructions to establish all penetration test
prerequisite initial conditions;

d. instructions to stimulate the TSF;

e. instructions for observing the behaviour of
the TSF;

f. descriptions of all expected results and the
necessary analysis to be performed on the
observed behaviour for comparison
againstexpected results;

g. instructions to conclude the test and
establish the necessary post-test state for the
TOE.

Replace the CEM work unit with the activities
specified in Section A.3, “Reporting”.

AVA_VAN.1-7 The evaluator shall conduct
penetration testing.

The evaluator shall perform the CEM activity as
specified. See Section A.3, “Reporting”, for
guidance related to attack potential for
confirmed flaws.

AVA_VAN.1-8 The evaluator shall record the
actual results of the penetration tests.

The evaluator shall perform the CEM activity as
specified.

AVA_VAN.1-9 The evaluator shall report in the
ETR the evaluator penetration testing effort,
outlining the testing approach, configuration,
depth and results.

Replace the CEM work unit with the reporting
called for in Section A.3, “Reporting”.

97

CEM AVA_VAN.1 Work Units Evaluation Activities

AVA_VAN.1-10 The evaluator shall examine the
results of all penetration testing to determine
that the TOE, in its operational environment, is
resistant to an attacker possessing a Basic attack
potential.

This work unit is not applicable for Type 1 and
Type 2 flaws (as defined in Section A.1, “Sources
of vulnerability information”), as inclusion in
this Supporting Document by the iTC makes any
confirmed vulnerabilities stemming from these
flaws subject to an attacker possessing a Basic
attack potential. This work unit is replaced for
Type 3 and Type 4 flaws by the activities defined
in Section A.3, “Reporting”.

AVA_VAN.1-11 The evaluator shall report in the
ETR all exploitable vulnerabilities and residual
vulnerabilities, detailing for each:

a. its source (e.g. CEM activity being
undertaken when it was conceived, known
to the evaluator, read in a publication);

b. the SFRs not met;

c. a description;

d. whether it is exploitable in its operational
environment or not (i.e. exploitable or
residual).

e. the amount of time, level of expertise, level
of knowledge of the TOE, level of
opportunity and the equipment required to
perform the identified vulnerabilities, and
the corresponding values using the tables 3
and 4 of Annex B.4.

Replace the CEM work unit with the reporting
called for in Section A.3, “Reporting”.

Because of the level of detail required for the evaluation activities, the bulk of the instructions are
contained in Appendix A, while an "outline" of the evaluation activity is provided below.

5.6.1.1. Evaluation Activity (Documentation):

The developer shall provide documentation identifying the list of software and hardware
components that compose the TOE. Hardware components apply to all systems claimed in the ST,
and should identify at a minimum the processors used by the TOE. Software components include
any libraries used by the TOE, such as cryptographic libraries. This additional documentation is
merely a list of the name and version number of the components, and will be used by the
evaluators in formulating hypotheses during their analysis.

The evaluator shall examine the documentation outlined below provided by the vendor to confirm
that it contains all required information. This documentation is in addition to the documentation
already required to be supplied in response to the EAs listed previously.

In addition to the activities specified by the CEM in accordance with Table 6, “Mapping of

98

AVA_VAN.1 CEM Work Units to Evaluation Activitiess” above, the evaluator shall perform the
following activities.

5.6.1.2. Evaluation Activity

The evaluator formulates hypotheses in accordance with process defined in Section A.1. The evaluator
documents the flaw hypotheses generated for the TOE in the report in accordance with the guidelines
in Section A.3. The evaluator shall perform vulnerability analysis in accordance with Section A.2. The
results of the analysis shall be documented in the report according to Section A.3.

99

Chapter 6. Required Supplementary
Information
This Supporting Document refers in various places to the possibility that 'required supplementary
information' may need to be supplied as part of the deliverables for an evaluation. This term is
intended to describe information that is not necessarily included in the Security Target or
operational guidance, and that may not necessarily be public. Examples of such information could
be entropy analysis, or description of a cryptographic key management architecture used in (or in
support of) the TOE. The requirement for any such supplementary information will be identified in
the relevant cPP.

The supplementary information required by this SD are:

• Entropy Documentation, which is evaluated against the guidance specified in Appendix D of the
[DSC cPP].

• A Key Management Document (KMD), which is evaluated against all relevant KMD Evaluation
Activities in this SD.

100

Chapter 7. References
[CC1] Common Criteria for Information Technology Security Evaluation, Part 1: Introduction and
General Model CCMB-2017-04-001, Version 3.1 Revision 5, April 2017

[CC2] Common Criteria for Information Technology Security Evaluation, Part 2: Security Functional
Components, CCMB-2017-04-002, Version 3.1 Revision 5, April 2017

[CC3] Common Criteria for Information Technology Security Evaluation, Part 3: Security Assurance
Components, CCMB-2017-04-003, Version 3.1 Revision 5, April 2017

[CEM] Common Methodology for Information Technology Security Evaluation, CCMB-2017-04-004,
Version 3.1 Revision 5, April 2017

[DSC cPP] collaborative Protection Profile for Dedicated Security Component, Version 1.0.1,
December 13, 2022

[ISO-TR] ISO/IEC. ISO/IEC 24759-3:2017 Information Technology - Security Techniques - Test
Requirements for Cryptographic Modules, ISO/IEC, 2017

101

Appendix A: Vulnerability Analysis

A.1. Sources of vulnerability information
CEM work unit AVA_VAN.1-3 has been supplemented in this Supporting Document to provide a
better-defined set of flaws to investigate and procedures to follow based on this particular
technology. Terminology used is based on the flaw hypothesis methodology, where the evaluation
team hypothesizes flaws and then either proves or disproves those flaws (a flaw is equivalent to a
"potential vulnerability" as used in the CEM). Flaws are categorized into four "types" depending on
how they are formulated:

1. A list of flaw hypotheses applicable to the technology described by the [DSC cPP] derived from
public sources as documented in Section A.1.1—this fixed set has been agreed to by the iTC.
Additionally, this will be supplemented with entries for a set of public sources (as indicated
below) that are directly applicable to the TOE or its identified components (as defined by the
process in Section A.1.1 below); this is to ensure that the evaluators include in their assessment
applicable entries that have been discovered since the [DSC cPP] was published;

2. A list of flaw hypotheses contained in this document that are derived from lessons learned
specific to that technology and other iTC input (that might be derived from other open sources
and vulnerability databases, for example) as documented in Section A.1.2;

3. A list of flaw hypotheses derived from information available to the evaluators; this includes the
baseline evidence provided by the vendor described in this Supporting Document
(documentation associated with EAs, documentation described in Section 5.6.1.1,
documentation described in Section 6), as well as other information (public or based on
evaluator experience) as documented in Section A.1.3; and

4. A list of flaw hypotheses that are generated through the use of iTC-defined tools (e.g. network
mappping utilities, protocol testers) and their application is specified in Section A.1.4.

A.1.1. Type 1 Hypotheses—Public-Vulnerability-based

The following list of public sources of vulnerability information were selected by the iTC (in no
particular order):

a. Common Vulnerabilities and Exposures: https://cve.mitre.org/cve/

b. The National Vulnerability Database: https://nvd.nist.gov/

c. US-CERT https://www.kb.cert.org/vuls/search/

d. CVE Details: https://www.cvedetails.com/vulnerability-search.php

e. Tipping Point Zero Day Initiative https://www.zerodayinitiative.com/advisories

f. Offensive Security Exploit Database: https://www.exploit-db.com/

The list of sources above should be searched with the following search terms:

• Vendor name

• Product name

102

https://cve.mitre.org/cve/
https://nvd.nist.gov/
https://www.kb.cert.org/vuls/search/
https://www.cvedetails.com/vulnerability-search.php
https://www.zerodayinitiative.com/advisories
https://www.exploit-db.com/

• Third-party or OEM components, if known

• If the DSC is embedded in specific commercially-available products, any terms relevant to a
sample of those products

In order to successfully complete this activity, the evaluator will use the developer provided list of
all of 3rd party library information that is used as part of their product, along with the version and
any other identifying information (this is required in the [DSC cPP] as part of the ASE_TSS.1.1C
requirement). This applies to hardware (including chipsets, etc.) that a vendor uses as part of their
TOE. This TOE-unique information will be used in the search terms the evaluator uses in addition to
those listed above.

The evaluator will also consider the requirements that are chosen and the appropriate guidance
that is tied to each requirement.

In order to supplement this list, the evaluators shall also perform a search on the sources listed
above to determine a list of potential flaw hypotheses that are more recent that the publication date
of the [DSC cPP], and those that are specific to the TOE and its components as specified by the
additional documentation mentioned above. Any duplicates - either in a specific entry, or in the
flaw hypothesis that is generated from an entry from the same or a different source - can be noted
and removed from consideration by the evaluation team.

As part of type 1 flaw hypothesis generation for the specific components of the TOE, the evaluator
shall also search the component manufacturer’s websites to determine if flaw hypotheses can be
generated on this basis (for instance, if security patches have been released for the version of the
component being evaluated, the subject of those patches may form the basis for a flaw hypothesis).

A.1.2. Type 2 Hypotheses—iTC-Sourced

The following list of flaw hypothesis generated by the iTC for this technology must be considered by
the evaluation team as flaw hypotheses in performing the vulnerability assessment.

There are currently no iTC-sourced flaw hypotheses. A future revision of the [DSC cPP] may update
this section for relevant findings made by evaluation laboratories.

If the evaluators discover a Type 3 or Type 4 flaw that they believe should be considered as a Type 2
flaw in future versions of this [DSC cPP], they should work with their Certification Body to
determine the appropriate means of submitting the flaw for consideration by the iTC.

A.1.3. Type 3 Hypotheses—Evaluation-Team-Generated

The iTC has leveraged the expertise of the developers and the evaluation labs to diligently develop
the appropriate search terms and vulnerability databases. They have also thoughtfully considered
the iTC-sourced hypotheses the evaluators should use based upon the applicable use case and the
threats to be mitigated by the SFRs. Therefore, it is the intent of the iTC, for the evaluation to focus
all effort on the Type 1 and Type 2 Hypotheses and has decided that Type 3 Hypotheses are not
necessary.

However, if the evaluators discover a Type 3 potential flaw that they believe should be considered,
they should work with their Certification Body to determine the feasibility of pursuing the

103

hypothesis. The Certification Body may determine whether the potential flaw hypotheses is worth
submitting to the iTC for consideration as Type 2 hypotheses in future drafts of the [DSC cPP]/SD.

A.1.4. Type 4 Hypotheses—Tool-Generated

The iTC has called out several tools that should be used during the Type 2 hypotheses process.
Therefore, the use of any tools is covered within the Type 2 construct and the iTC does not see any
additional tools that are necessary. The use case for Version 2 of this [DSC cPP] is rather
straightforward - the device is found in a powered down state and has not been subjected to
revisit/evil maid attacks. Since the use case is so narrow, and is not a typical model for penetration
or fuzzing testing, the normal types of testing do not apply. Therefore, the relevant types of tools are
referenced in Type 2.

A.2. Process for Evaluator Vulnerability Analysis
As flaw hypotheses are generated from the activities described above, the evaluation team will
disposition them; that is, attempt to prove, disprove, or determine the non-applicability of the
hypotheses. This process is as follows.

The evaluator shall refine each flaw hypothesis for the TOE and attempt to disprove it using the
information provided by the developer or through penetration testing. During this process, the
evaluator is free to interact directly with the developer to determine if the flaw exists, including
requests to the developer for additional evidence (e.g., detailed design information, consultation
with engineering staff); however, the CB should be included in these discussions. Should the
developer object to the information being requested as being not compatible with the overall level
of the evaluation activity/[DSC cPP] and cannot provide evidence otherwise that the flaw is
disproved, the evaluator prepares an appropriate set of materials as follows:

1. The source documents used in formulating the hypothesis, and why it represents a potential
compromise against a specific TOE function;

2. An argument why the flaw hypothesis could not be proven or disproved by the evidence
provided so far; and

3. The type of information required to investigate the flaw hypothesis further.

The Certification Body (CB) will then either approve or disapprove the request for additional
information. If approved, the developer provides the requested evidence to disprove the flaw
hypothesis (or, of course, acknowledge the flaw).

For each hypothesis, the evaluator shall note whether the flaw hypothesis has been successfully
disproved, successfully proven to have identified a flaw, or requires further investigation. It is
important to have the results documented as outlined in Section A.3 below.

If the evaluator finds a flaw, the evaluator must report these flaws to the developer. All reported
flaws must be addressed as follows:

If the developer confirms that the flaw exists and that it is exploitable at Basic Attack Potential, then
a change is made by the developer, and the resulting resolution is agreed by the evaluator and
noted as part of the evaluation report.

104

If the developer, the evaluator, and the CB agree that the flaw is exploitable only above Basic Attack
Potential and does not require resolution for any other reason, then no change is made and the
flaw is noted as a residual vulnerability in the CB-internal report (ETR).

If the developer and evaluator agree that the flaw is exploitable only above Basic Attack Potential,
but it is deemed critical to fix because of specific aspects such as typical use cases or operational
environments, then a change is made by the developer, and the resulting resolution is agreed by
the evaluator and noted as part of the evaluation report.

Disagreements between evaluator and vendor regarding questions of the existence of a flaw, its
attack potential, or whether it should be deemed critical to fix are resolved by the CB.

Any testing performed by the evaluator shall be documented in the test report as outlined in
Section A.3 below.

As indicated in Section A.3, the public statement with respect to vulnerability analysis that is
performed on TOEs conformant to the [DSC cPP] is constrained to coverage of flaws associated with
Types 1 and 2 (defined in Section A.1) flaw hypotheses only. The fact that the iTC generates these
candidate hypotheses indicates these must be addressed.

A.3. Reporting
The evaluators shall produce two reports on the testing effort; one that is public-facing (that is,
included in the non-proprietary evaluation report, which is a subset of the Evaluation Technical
Report (ETR)), and the complete ETR that is delivered to the overseeing CB.

The public-facing report contains:

• The flaw identifiers returned when the procedures for searching public sources were followed
according to instructions in the Supporting Document per Section A.1.1;

• A statement that the evaluators have examined the Type 1 flaw hypotheses specified in this
Supporting Document in Section A.1.1 (i.e. the flaws listed in the previous bullet) and the Type 2
flaw hypotheses specified in this Supporting Document by the iTC in Section A.1.2.

No other information is provided in the public-facing report.

The internal CB report contains, in addition to the information in the public-facing report:

• A list of all of the flaw hypotheses generated (cf. AVA_VAN.1-4);

• The evaluator penetration testing effort, outlining the testing approach, configuration, depth
and results (cf. AVA_VAN.1-9);

• All documentation used to generate the flaw hypotheses:

◦ The documentation shall be characterized so that a reader can determine whether it is
strictly required by this Supporting Document, and the nature of the documentation (design
information, developer engineering notebooks, etc.);

• The evaluator shall report all exploitable vulnerabilities and residual vulnerabilities, detailing
for each:

105

◦ Its source (e.g. CEM activity being undertaken when it was conceived, known to the
evaluator, read in a publication);

◦ The SFRs not met;

• A description;

◦ Whether it is exploitable in its operational environment or not (i.e. exploitable or residual).

◦ The amount of time, level of expertise, level of knowledge of the TOE, level of opportunity
and the equipment required to perform the identified vulnerabilities (cf. AVA_VAN.1-11);

◦ How each flaw hypothesis was resolved (this includes whether the original flaw hypothesis
was confirmed or disproved, and any analysis relating to whether a residual vulnerability is
exploitable by an attacker with Basic Attack Potential) (cf. AVA_VAN1-10); and

◦ In the case that actual testing was performed in the investigation (either as part of flaw
hypothesis generation using tools specified by the iTC in Section A.1.4, or in
proving/disproving a particular flaw) the steps followed in setting up the TOE (and any
required test equipment); executing the test; post-test procedures; and the actual results (to
a level of detail that allow repetition of the test, including the following:

▪ Identification of the potential vulnerability the TOE is being tested for;

▪ Instructions to connect and setup all required test equipment as required to conduct the
penetration test;

▪ Instructions to establish all penetration test prerequisite initial conditions;

▪ Instructions to stimulate the TSF;

▪ Instructions for observing the behaviour of the TSF;

▪ Descriptions of all expected results and the necessary analysis to be performed on the
observed behaviour for comparison against expected results;

▪ Instructions to conclude the test and establish the necessary post-test state for the TOE.
(cf. AVA_VAN.1-6, AVA_VAN.1-8).

106

Appendix B: Equivalency Considerations

B.1. Introduction
This appendix provides a foundation for evaluators to determine whether a vendor’s request for
equivalency of products is allowed.

For the purpose of this evaluation, equivalency can be broken into two categories:

• Variations in models: Separate TOE models/variations may include differences that could
necessitate separate testing across each model. If there are no variations in any of the categories
listed below, the models may be considered equivalent.

• Variations in TOE dependencies on the environment (e.g., OS/platform the product is
tested on): The method a TOE provides functionality (or the functionality itself) may vary
depending upon the environment on which it is installed. If there is no difference in the TOE-
provided functionality or in the manner in which the TOE provides the functionality, the models
may be considered equivalent.

Determination of equivalency for each of the above specified categories can result in several
different testing outcomes.

If a set of TOE are determined to be equivalent, testing may be performed on a single variation of
the TOE. However, if the TOE variations have security-relevant functional differences, each of the
TOE models that exhibits either functional or structural differences must be separately tested.
Generally speaking, only the difference between each variation of TOE must be separately tested.
Other equivalent functionality may be tested on a representative model and not across multiple
platforms.

If it is determined that a TOE operates the same regardless of the environment, testing may be
performed on a single instance for all equivalent configurations. However, if the TOE is determined
to provide environment-specific functionality, testing must take place in each environment for
which a difference in functionality exists. Similar to the above scenario, only the functionality
affected by environment differences must be retested.

If a vendor disagrees with the evaluator’s assessment of equivalency, the Scheme arbitrates
between the two parties whether equivalency exists.

B.2. Evaluator guidance for determining equivalence

B.2.1. Strategy

When performing the equivalency analysis, the evaluator should consider each factor
independently. A factor may be any number of things at various levels of abstraction, ranging from
the processor a device uses, to the underlying operating system and hardware platform a software
application relies upon. Examples may be the various chip sets employed by the product, the type
of network interface (different device drivers), storage media (solid state drive, spinning disk,
EEPROM). It is important to consider how the difference in these factors may influence the TOE’s

107

ability to enforce the SFRs. Each analysis of an individual factor will result in one of two outcomes:

• For the particular factor, all variations of the TOE on all supported platforms are equivalent. In
this case, testing may be performed on a single model in a single test environment and cover all
supported models and environments.

• For the particular factor, a subset of the product has been identified to require separate testing
to ensure that it operates identically to all other equivalent TOEs. The analysis would identify
the specific combinations of models/testing environments that needed to be tested.

Complete CC testing of the product would encompass the totality of each individual analysis
performed for each of the identified factors.

B.3. Test presentation/Truth in advertising
In addition to determining what to test, the evaluation results and resulting validation report must
identify the actual module and testing environment combinations that have been tested. The
analysis used to determine the testing subset may be considered proprietary and will only
optionally be publicly included.

108

	Supporting Document: Evaluation Activities for collaborative Protection Profile for Dedicated Security Component: Mandatory Technical Document
	Foreword
	Table of Contents
	Chapter 1. Introduction
	1.1. Technology Area and Scope of Supporting Document
	1.2. Structure of the Document
	1.3. Terminology
	1.3.1. Glossary
	1.3.2. Acronyms

	1.4. Test Environment Note

	Chapter 2. Evaluation Activities for SFRs
	2.1. Cryptographic Support (FCS)
	2.1.1. Cryptographic Key Management (FCS_CKM)
	2.1.2. Cryptographic Key Management (Extended - FCS_CKM_EXT)
	2.1.3. Cryptographic Operation (FCS_COP)
	2.1.4. Random Bit Generation (Extended - FCS_RBG_EXT)
	2.1.5. Cryptographic Salt Generation (Extended - FCS_SLT_EXT)
	2.1.6. Cryptographic Key Storage (Extended - FCS_STG_EXT)

	2.2. User Data Protection (FDP)
	2.2.1. Access Control Policy (FDP_ACC)
	2.2.2. Access Control Functions (FDP_ACF)
	2.2.3. Export from the TOE (Extended - FDP_ETC_EXT)
	2.2.4. Factory Reset (Extended - FDP_FRS_EXT)
	2.2.5. Import from Outside the TOE (Extended - FDP_ITC_EXT)
	2.2.6. Mutable/Immutable Firmware (Extended - FDP_MFW_EXT)
	2.2.7. Residual Information Protection (FDP_RIP)
	2.2.8. Stored data confidentiality with dedicated method
	2.2.9. Stored Data Integrity (FDP_SDI)

	2.3. Identification and Authentication (FIA)
	2.3.1. Authorization Failure Handling (Extended - FIA_AFL_EXT)
	2.3.2. Specification of Secrets (FIA_SOS)
	2.3.3. User Authentication (FIA_UAU)

	2.4. Security Management (FMT)
	2.4.1. Management of Functions in TSF (Extended - FMT_MOF_EXT)
	2.4.2. Management of Security Attributes (FMT_MSA)
	2.4.3. Specification of Management Functions (FMT_SMF)
	2.4.4. Security Management Roles (FMT_SMR)

	2.5. Protection of the TSF (FPT)
	2.5.1. Fail Secure (FPT_FLS)
	2.5.2. Debug Modes (Extended - FPT_MOD_EXT)
	2.5.3. TSF Physical Protection (FPT_PHP)
	2.5.4. Root of Trust (Extended - FPT_PRO_EXT)
	2.5.5. Root of Trust Services (Extended - FPT_ROT_EXT)
	2.5.6. Replay Prevention (FPT_RPL)
	2.5.7. Time Stamps (FPT_STM)
	2.5.8. TSF Self Test (FPT_TST)

	2.6. Resource Utilization (FRU)
	2.6.1. Fault Tolerance (FRU_FLT)

	Chapter 3. Evaluation Activities for Optional Requirements
	3.1. Cryptographic Support (FCS)
	3.1.1. Entropy for External IT Entities (Extended - FCS_ENT_EXT)
	3.1.2. Random Bit Generation (Extended - FCS_RBG_EXT)

	3.2. Protection of the TSF (FPT)
	3.2.1. Internal TOE TSF Data Transfer (FPT_ITT)
	3.2.2. Root of Trust (Extended - FPT_PRO_EXT)
	3.2.3. Root of Trust Services (Extended - FPT_ROT_EXT)

	Chapter 4. Evaluation Activities for Selection-Based Requirements
	4.1. Cryptographic Support (FCS)
	4.1.1. Cryptographic Key Generation (FCS_CKM)
	4.1.2. Cryptographic Key Management (Extended - FCS_CKM_EXT)
	4.1.3. Cryptographic Operation (FCS_COP)

	4.2. User Data Protection (FDP)
	4.2.1. Data Authentication (FDP_DAU)
	4.2.2. Factory Reset (Extended - FDP_FRS_EXT)
	4.2.3. Mutable/Immutable Firmware (Extended - FDP_MFW_EXT)

	4.3. Identification and Authentication (FIA)
	4.3.1. Authorization Failure Handling (Extended - FIA_AFL_EXT)

	4.4. Protection of the TSF (FPT)
	4.4.1. Fail Secure (FPT_FLS)
	4.4.2. Replay Detection (FPT_RPL)

	4.5. Trusted Path/Channels (FTP)
	4.5.1. CCM Protocol (Extended - FTP_CCMP_EXT)
	4.5.2. GCM Protocol (Extended - FTP_GCMP_EXT)
	4.5.3. Inter-TSF Trusted Channel (Extended - FTP_ITC_EXT)
	4.5.4. Encrypted Data Communications (Extended - FTP_ITE_EXT)
	4.5.5. Physically Protected Channel (Extended - FTP_ITP_EXT)

	Chapter 5. Evaluation Activities for SARs
	5.1. ASE: Security Target Evaluation
	5.2. ADV: Development
	5.2.1. Basic Functional Specification (ADV_FSP.1)

	5.3. AGD: Guidance Documents
	5.3.1. Operational User Guidance (AGD_OPE.1)
	5.3.2. Preparative Procedures (AGD_PRE.1)

	5.4. ALC: Life-cycle Support
	5.4.1. Labelling of the TOE (ALC_CMC.1)
	5.4.2. TOE CM coverage (ALC_CMS.1)

	5.5. ATE: Tests
	5.5.1. Independent Testing - Conformance (ATE_IND.1)

	5.6. AVA: Vulnerability Assessment
	5.6.1. Vulnerability Survey (AVA_VAN.1)

	Chapter 6. Required Supplementary Information
	Chapter 7. References
	Appendix A: Vulnerability Analysis
	A.1. Sources of vulnerability information
	A.1.1. Type 1 Hypotheses—Public-Vulnerability-based
	A.1.2. Type 2 Hypotheses—iTC-Sourced
	A.1.3. Type 3 Hypotheses—Evaluation-Team-Generated
	A.1.4. Type 4 Hypotheses—Tool-Generated

	A.2. Process for Evaluator Vulnerability Analysis
	A.3. Reporting

	Appendix B: Equivalency Considerations
	B.1. Introduction
	B.2. Evaluator guidance for determining equivalence
	B.2.1. Strategy

	B.3. Test presentation/Truth in advertising

